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ABSTRACT 

In this paper, a canonical formalism has been developed for 

the description of the negative mass instability (N.M.I.) and longi- 

tudinal oscillations of relativistic beams.    This formalism has been 

applied to ascertain the stabilizing effect of betatron oscillations, and 

to determine the dispersion relation governing counterstreaming ions 

and relativistic electrons.    The results show that only the spread in 

p . the canonical angular momentum of the particles, contributes to 

stability.    The N. M. I.  equation for two streams is the same as though 

each were separately present; and the dispersion relation for longi- 

tudinal oscillations of beams in a magnetic field is given by the N.M.I 

dispersion relation,  and not^ by the dispersion relation for longitudinal 

oscillations of collinear beams.    Moreover, the dispersion relation for 

longitudinal oscillations of thin collinear beams differs from the usual 

equation by a non-trivial factor. 
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CHAPTER I - INTRODUCTION 

Sec.  1.1 - The Description of the N.M.I. 

The N.M.I,  causes azimuthal clumping of intense beams in any 

device with a magnetic field of axial symmetry that provides radial and 

axial focusing,  e.g.. synchrotron,  betatron, and mirror machine 

(e.g. , DCX).    (See Fig. i  .)   In the unstable regime this clumping grows 

so that eventually transverse space charge forces exceed the focusing 

forces and part of the beam is lost.    (A crude analogy is the loss of 

water in a shallow circular trough, when waves are set up.)   In the stable 

regime, the clumps travel with the beam and move very slowly relative 

to it.    Thus   I   equally spaced clumps in a beam moving at cyclotron 

frequency    0.   . will give rise to a charge variation at one point of fre- 

quency   is' 26*   . 

A simple explanation of the cause of the instability is the following. 

Consider an azimuthally uniform distribution of cold particles in a beam. 

Making a small sinusoidal perturbation in the beam density effects a 

sinusoidal electric potential,  rotating with the beam.    Those particles 

ahead of the potential bump will be speeded up and those behind it will 

be slowed down.    Thus one would expect the bump to evanesce.    However, 

those particles which were speeded up move outward radially due to the 

centrifugal force.    The amount of radial motion depends on the magnetic 

field shape.   For weak focusing machines (o <  h  < /   ), the radial ex_ 

cursion is large enough to overcompensate the increase in linear veloc- 

ity so that the angular velocity decreases.    On the other hand, those 
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particles that are slowed down in linear velocity,  move inward radially 

and thus speed up in angular velocity so that the net effect is that the 

particles tend to move toward the angular position of the potential bump 

and the perturbation grows.   Since the angular acceleration is opposite 

to the force, the effect is as though the particles have negative effect- 

ive mass. 

As the radial focusing increases in strength, the radial ex- 

cursion becomes relatively smaller so that an increase in linear veloc- 

ity causes an increase in angular velocity and the effective mass be- 

comes positive.    This is the situation, for example,  in strong focusing 

machines (below transition energy) where the N.M.I, will not occur. 

Gravitational forces are weak, in the above sense,  so that 

particles have an effective negative mass.    Such a situation exists in 

Saturn's rings.    There, howaver.  the forces between two particles are 

attractive so that the negative mass prevents clumping and the ring 

system is stable.    This was first pointed out by Maxwell. 

The cause of the instability may also be seen by examining 

normal synchrotron operation.    During the acceleration cycle of a syn- 

chrotron, an R.  F.  field is applied across a gap.    If we assume that 

the gap is so small that the time change of the gap field is negligible 

while it is being traversed by the particle,  then the energy gained by 

the particle is dependent only on its phase relative to the R. F. field. 

({ In this case if the R.  F.  peak gap potential is   e /  , then the potential 

I may be replaced by an equivalent,  continuous rotating potential over 

the whole path of the particle given by   JL^    t-0* (e ' ^.r*). The 
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energy gained in one cycle of the particle is equal in both cases. 

Analysi , of the phase motion shows that there is a point of phase 

stability near the peak of the rotating field.    The beam particle den- 

sity is therefore a maximum at the same point.    If the magnetic field 

is stationary then the stable point is at_ the peak.    Suppose now that 

there is no rotating external   electric field but a rotating internal 

field caused by  0   perturbations in the beam density.    Since the 

stable phase point is at the field maximum, the particle density at the 

maximum will grow, which will make the field still stronger,  resulting 

in beam clumping. 
[ 

Sec.  1. 2 - Background 

This work was motivated by the conjecture that the N.M.I,  is 

the effect which most severely limits the maximum currents allowed 

in a plasma betatron.   For a plasma at an initial temperature of 3 e.v. 

the linearized N.M.I, theory predicts stability at a neutral beam den- 

sity where the current is only £ ^   amp of relativistic electrons (see 

eq.  2-47). 

The plasma betatron is a device which accelerates a neutralized 

beam of positive ions and electrons so that the space charge limit- 

ations of ordinary machines do not apply.    Examination of the equi- 

librium conditions,  by including the effect of the self-magnetic field 

as done by Schmidt,     gives the limit    !£< 6„  , which permits 1000 

amperes, 

I- Instabilities were first- rlis^n coo»i K,r i5.,^i,„_ 

i. 

L 

Instabilities were first discussed by Budker,   the originator of 

the scheme of the acceleration of a neutralized beam.    Two of these 
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instabilities, the two-stream longitudinal and the transverse (sinuous) 

are also discussed by Finkelstein and Sturrock,    who find stability 

criteria much less restrictive than required for the N.M.I. 

Another instability which might severely limit the maximum 

beam current was noted by Rosenbluth.      It arises when a beam of 

particles passes through a background resistive plasma.    Since in 

principle, this effect may be eliminated in a plasma betatron by care- 

ful design, we will not consider it further. 
(7) 

Harrison     has pointed out that the two-stream longitudinal 

instability severely restricts the maximum currents in a non-relativ- 

istic electron beam.   As already pointed out in a paper by Finkelstein 
15) 

and Sturrock,     hereafter to be referred to as F-S. for relativistic 

beams,    V< aooo    for stability, however for slower beams as shown 

by Harrison the stability requirement is  M >f?g" . for cold electron 

and ion beams.    ( V.    is the lineal stream density multiplied by the 

classical electron radius;   V,    i8 the electron stream velocity, the ion 

velocities being small;   g    i8 a logarithmic geometrical factor of order 

unity.)   The theory of the N.M.I,  shows that even if this inequality is 

satisfied each beam must be hot enough so that     -^ >-vp3 ,  US > EJ! 

(Since    J**,i        for usual  «    values, and  9    is a log    term, this 

inequality is independent of the device considered.)   We see therefore 

that the N.M.I. , discovered independently by Nielsen. Sessler and 
* ' (9) 

Symon.    and Kolomenskii and Lebedev.     restricts the maximum cur- 

rents in a plasma betatron more severely than the other effects. 

Plasma betatrons have been built by Budker and Naumov/10* 

and by workers at CERN   "   with the result that maximum currents 

L 
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were   10   amperes, much below the design value of these machines. 

The limitation is possibly due to the N.M.I.   A plasma betatron is 
(12) 

also under study at Stevens Institute of Technology. 

This instability is of broader interest,  because, as we shall 

show, thin beams in mirror magnetic fields where 0*. * *l   , will also 
(13) 

be subject to it,  e.g. in the DCX      machine, where it may be the 
(14) 

cause of the observed frequencies, as also pointed out bv Fowler. 
(15) 

The Astron,      containing a beam in a mi rror field may also be sub- 
(16) (17) 

ject to the N. M. I.   Samoilov      and Seidl       have observed particle 

bunching in betatrons and attribute this to the N.M.I.    However,  suf- 

ficiently detailed measurements have not been made to verify this 

conjecture.    These authors also suggest that the N.M.I,  is the major 

cause of capture of particles into stable orbits in betatrons. 

Sec.  1. 3 - Outline 

We have derived the N.M.I,  equations using a canonical 

formalism and the relativistic Hamiltonian.    This procedure allows 

one to include additional effects easily.    With the resultant dispersion 

relations, we derive a necessary and sufficient criterion for stability , 

which is simple only for single humped distributions.     The stability 

criterion may be given explicitly for Maxwellian distributions, and is 

similar to the result obtained for rectangular pulse distribution 
(8). (9) 

functions by other authors and hence justifies the use of pulse 

functions.    Our dispersion relation differs somewhat from earlier re- 

sults so that stable distributions exhibit damped oscillations.    This 

effect is shown explicitly for a resonance distribution function. 



i 
i 

10 
fl 

0 
I 

i: 
D 
o 
0 
I 

[] 

[ 

0 

i: 
i 

i. 

(9) 
Kolomenskii and Lebedev      have obtained similar stability criteria 

for a resonance function but have not worked out the damped situation. 
(13) 

This damping is mathematically analogous to Landau damping       in 

infinite plasmas.    Our results exhibit no damping for pulse distribution 

functions in agreement with the results of other authors. 

Previous works of other authors have dealt with circulating 

beams enclosed within conducting boundaries.   This paper considers 

unshielded beams so that every part of the beam sees every other part. 

We find that for small wave numbers of the perturbation, in the rela- 

tivistic domain, the beam will be stable even if it is cold.   (If   — = 
_L - Jifii. , *> 
i-*-    c» 3    1S negatlve then there is stability, where  ^J, *±   1= if. .. 

andg ■% i"   for typical cases.) 

Next we consider the effect of betatron oscillations on the N.M.I, 

and treat separately the axial (z) and radial (r) oscillations.    We find 

that these have a very slight effect on stability and therefore only the 

spread of    f&     contributes to the stability.    Our calculations also 

show that the growth rate of the instability slows down as it approaches 

the radial betatron oscillation frequency where the equations break down. 

Finally we generalize our equations to find the dispersion re- 

lation under the N.M.I, for two streams,  counterstreaming ions and 

relativistic electrons.    We find that the stability criteria are almost 

the same as though each beam were present by itself.    The difference 

is that when    h > J-    and      / >>   ^-^ > -L tu»   i     » o 
a     iiim      /   /      ^ ^ j^     , the electron modes are 

stable, even for a cold electron beam.    The ion modes, however, are 

still unstable. 
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may therefore be derived from the    two-stream N.M.I,  equations by 

letting  TTT —> ö    .    This equation, valid only for small   V     because 

I 
I 
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Next it is shown that the equation for longitudinal oscillations 

of collinear streams is valid for circular streams, only when •— « 

-L    , which is not generally true.    (It is true only in strong-focusing 

machines below transition.)   The equation for longitudinal oscillations 

the N.M.I equations are restricted to small   V   , differs from the 
(5) 

F-S       longitudinal equation.   Going back to the basic equations, an 

equation for the longitudinal oscillations, valid for all   V    ,  is ob- 

tained which gives stability for even higher currents than found in F-S. 

To check the validity of our equation, the dispersion relation for two 

infinitely wide beams is obtained from it.    If the ion beam is stationary 

I 
i 
1 

of the F-S equation, which consists of a factor      / -  M"o./ll 
Uc / 

rect.    This equation is similar to eq.  32 (eq.  9 in the abridged trans 
(4) 

Li lation) of Budker. 

0 
I 
I 

and cold, the dispersion relation agrees with that found by Bludman 
(19) 

et al. If we set the number of ions equal to zero, we find that the 

resulting dispersion relations may be obtained by a Lorentz transform- 

ation from the dispersion relations of both thin and infinite beams of 

non-relativistic electrons.    These results show that our modification 

,  is cor- 

;ed trans 

lation) of Budker',  'who has obtained the same stability criterion.   (His 

equations neglect beam temperatures and the ion beam velocity.) 

" ' 
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CHAPTER II - ONE STREAM 

D 
r 
i 

Here we develop the dispersion relations for a single stream. 

A constraint equation is found which reduces the Boltzman Equation to 

a one-dimensional equation.    Since the equation for the potential is then 

given by an integral over one momentum variable, the resulting equa- 

Otions are formally similar to the one-dimensional system first studied 
(18) (20) 

by L. D.  Landau      and later also by Backus.        These equations are 
(21) 

Ö solved following Jackson        while the Nyquist diagram technique of 

Penrose is used to obtain generalized stability criteria including 

the stability criterion for a Maxwellian distribution.    These equations 

are then solved exactly for a resonance function and a pulse function. 

Finally the Boltzman Equation is solved,  non-relativistically,  by in- 

cluding the (z) axial betatron oscillations and the (r) radial betatron os- 

cillations separately. 

Sec.   2.1 - The Constraint Equation 

The basic equation for our system is the collisionless Boltzman 

equation 

| dt B0 d/'o -dr        l>f>r      t*    "a/V 
= O 

If the coefficients  CJ.   and p.   are obtained from a relativistic Hamiltonian 

and   Y describes particles with the same rest mass, then this equation 

is relativistically correct.   A brief discussion of the relativistic invariance 
(23) 

is given by Belyaev and Budker. In the following way they show that 

T    is a Lorentz invariant scalar.    The particle flux and density four- 
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vector.    jk     is obtained from       /^-^        , an invariant expres- 

Biom   In terms of the four-velocity   uk  . Ft<   = FuH   and F (y, , ^ ) = 

~tliKtfr   )-i(j::fnr-iJ)y   ~^c).    The ^function arises because 

[] F describes particles with the same rest mass,   f   is the distribution 

function of eq. 1.  so that        /&/^ .- h , the number of particles per 

U unit volume.   Since the function is written in an invariant way.   ^ 

J-J must be invariant because F is invariant.    (There is an error in the ex- 

pression for F and H in their paper.  "Vhe factor in F should be   -,•   . 

|] not   i c   , and H should be multiplied by   c   .)   Because of the S function. 

r   is a function of only seven variables, the four coordinates and the 

U three momenta.    Eq. 1 may be derived from their invariant Boltzman 

equation by integrating    it over    ^   to eliminate the J function.    Thus 

eq. 1 is relativistically correct. 

Jj Our procedure is to simplify the expressions for the coefficients 

0f eq- l and ^^ fl0lVe the Boltzm- equation by a perturbation procedure. 

U ^^ mean8 Writing    ^   =     %*%'  where    ^c< %    in some operational 

sense and   t   describes the unperturbed configuration which is time in- 

dependent.    If     t    , initially small,  has an exponentially increasing 

time dependence then the system is unstable. 

The unperturbed system consists of one specie of particles ro- 

(] tating about an axially symmetric magnetic field.    (See Fig. i   ).    The 

Bz field falls off slowly with radius near r0 according to Bz = B0 (ü)* 

U where 0. * < ,    to provide focu8ing) as ^^^ ^ ^^ ^      W 

particles occupy a toroidal region of small cross section and form an 

azimuthally uniform distribution 

0 
I 
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The equations for the transverse motion are derived in 

Appendix I and are given by eqs. A-8,  9 and 10,  which describe the 

usual betatron oscillations.    Note that m, the relativistic mass (/OM,,, 

as defined in Appendix I) is constant,  since the energies of betatron 

oscillation are constant.    These equations for the transverse motion 

are valid if 

are neglected relative to      .M" ,   ^_« in eqs. A-3a,  3c.    (The 
ar     a? 

superscript zero refers to quantities due to the unperturbed beam.) 

This requires that 1.&    L?   Af   iV = ^       for the electron^ 

or ion       stream.    It is also required that Ar, Az and A     be negligible. 

In fact Ar = Az = 0 because of the symmetry of the particle motion. 
(3) 

Finally,  as Schmidt       has pointed out, the self-field term, ' 
ar 

causes a radial shift in equilibrium orbit which is negligible if   i^q^ e 

in which case Au
e    is also negligible. 

The Schmidt criterion may be derived in the following manner. 
0 

Bz =  0 at the center of the current torus,  i. e. ,  near r = r0,  z = 0, 

if the current is distributed uniformly over the cross section.    The re- 

lation Bg =      ZK   +   A} = 0 then gives        M?  = - JÜ From 
3r r ar r 

Appendix I we see that the radial motion of the particles is determined 

by a vector potential A6   .    The beam center is at the bottom of the well 

defined by the total vector potential, the external plus the self-field. 

See Fig.   2.    The location of the bottom is given by the solution of 

H. =   ^ + lA} _.,,     or    U* , ^   us = 0   To find 
dr ar ar Jr        r 
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the value of Ä^   at the center of the beam, near r = r0, we use eqs. A-5b, 

C-17 and C-20 to obtain     A* =     12» £    Üs   =   Vfjü ^o_c ir^ .    By eq. A-2b, 

V0 *  ' iA*  = ULi** * AB
) .    Substituting this value of   \re   and 

solving for Ao
0   gives ^ =        r_'--^    .    By eq. A-4,     -Ml      = 

(1 - n)   —7-^- "to .    Thus using the equation for the location of the 
's A A0 * ä 

bottom of the well       x— ^    T5        .  we obtain finally   -   ^i?  — —«-^     = 
<>r 1 sr    1+   *<), 

(l-h)    -2. Aßc .    Since       )LSJ «j  ,  and r « r0, this expression 

reduces to 
*- 

The maximum of the R.H.S.  of this equation is    tH   ,  which gives us 

Schmidt's criterion.    Note that the current loop moves radially inward 

in the Betatron field,  contrary to a free current loop which, as is well- 

known,  expands. 

The unperturbed,  zero-order azimuthally symmetric distribution 

describes particles with a spread in p6  values and a range of betatron 

oscillation amplitudes. 

The variables p^  ,  r - r0,  and z are considered first-order 

small.    Quadratic terms in these quantities will be neglected.    As a re- 

sult of the perturbation which causes azimuthal fields, p     is no longer 

constant for each particle but changes slowly with time (see eq. A-3b) 

and, therefore,  m   will too.    There will now be terms due to A'r, Aß 

and  (p  ,  in the expression for pz,  and hence additional terms in eq. 

A-9.    Az remains zero because the motion is symmetric about 

the z = 0 plane.    Ar may also be neglected    for thin beams because the 

radial phase velocity due to the N.M.I,  is always much slower than   c. 
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I 
The terms   dAe ,  2AÖ ,  %<{>',   dif'      give the effect of the perturbed 

ar   ' "3^     9r     7* 
transverse space charge.   It appears plausible that under the conditions 

that the zero order transverse space charge effects may be neglected 

relative to the focusing betatron field, that the perturbed terms may 

also be neglected.    It is possible in fact to show this non-relativistically 

with the formalism of Sec.  2. 5.    This suggests that if ^a.ee    these 

terms may be neglected. 

With the above assumptions, we obtain from eqs. A-8 and A-9 

that pz = mz and pz = - t ^     •    Since m must be constant for particle 

motion in a static magnetic field, these equations give mz = - hj        or 

pz    + bz^ = constant.    This means that the energy of the z betatron oscil- 

lations is constant.    Thus if   1   is a function of z and pz only through 

pz
2 + bz2, i. e. ,   I =  X (r, p , 0   , Pe . t, pz

2 + bz2), the two z terms 

in the Boltzman equation add to zero as may be verified by substitution. 

The coefficients of the other terms do not contain z or pz 
to first order 

so that we may integrate the Boltzman equation over   cif-cifJ  •  an^ writing 

1   - j   jdictfr   obtain, 

*I\ e 51' * Ml'* i>rll\ r 'lt'=o     2-3 

at 3ö 2 fo dfr d r 

We have thereby reduced the equation to a two-dimensional one. 

Next we deduce a constraint equation linking r and p   , through 

which the problem is reduced to only one dimension.    The equation of 

motion in the r direction is, by eq. A-10 (again neglecting the transverse 

space charge forces and Aj.), 

I 

I 

0 
at T^l    r        c       I 2_4a 
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For m and pe constant this equation may be rewritten as 

r=   -A ft>  - u,*(r.n) 2.4b 

where    ^r-- ^rj? ^ .- /FTTZ-gg.) .    This shows that a particle oscil- 

Olates about an equilibrium position       f« = n,   + —L  JL_   fi0      with 
'"♦, eB,r0 

l0 

a frequency    u>»r   .    This equilibrium position will vary with pÄ , but 

the frequency    vr   remains constant to lowest order.    This may be seen 

more clearly by examining the plot of AB in Fig.  2.    Eq.  4a gives the 

motion of a particle in the potential well    L0 - LAB    .   Clearly the 
re 7 

minimum of the total well is shifted according to the value of pd . 

(This is seen by adding the curve (-S.fr )±       to AQ in Fig.  2). 

Under the influence of azimuthally varying electric fields, p   will 

change, as appears from eq. A-2b.    These fields will occur as a result 

of the N.M.I.    Suppose now that the pö variation of a particle is very 

slow.    Then if the particle is initially at the bottom of the total well,  it 

will stay very near the bottom and follow the shifts in p0 .    This may be 

shown easily by writing the steady state solution of eq. 4 with the initial 

condition that the particle is resting at the bottom of the well,  i. e. , 

r = r= 0        at t = 0 and the assumption that ptf = Pcoa ^ A .    This 

solution is 

r-r„  =   6° Coi-^f    -   Us? c*a. K>. i 2-5 •» r.     u* - u? 

If now the p0 oscillation is so slow that        ^ « ^        , then the second 

term on the R. H.S.  of eq.   5 may be neglected and we find 

^      " T^T    TT-T   f* 
h     e^'-'   ' 2-6 
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i.e. , the particle follows the bottom of the well.    This may also be 

seen from eq. 4b as r is now much less than either term on the R.H.S. 

of the equation.    Setting "r = 0 gives the same eq.  6.    This is the de- 

sired constraint equation.    This means that if the particle is initially 

at the bottom of the well, with nearly zero amplitude betatron oscil- 

lations, then if the bottom of the well shifts slowly enough, the particle 

will follow the bottom without any fast betatron oscillations being ex- 

cited.    Their amplitude by eq.  5 is only       J^si        the amplitude of the 
u/ a 

r 
slow motion. 

Due to the p0 changes and the azimuthal field, the relativistic 

mass m  will change with time,  so that strictly a term    -jji     should 

be included on the L.H.S.  of eq.  3.    This term is however of order p^ 

and is neglected as we keep only terms -^p^. 

The restriction     K,J «• t/r
a   , naturally places restrictions on 

the solution of the Boltzman equation describing the N.M.I, which 

restrictions we now derive.    We shall assume below that     f*'* £ 

The particles travel at an average velocity 60,  so that   6=6et.   Hence, 

the time variation of p  for a particle, is     f>9 ~ g'('0*'-'1)'      , and the 

frequency of oscillation of p   of a particle,  is       2©. -Jl     .   Thus the 

above condition, that the constraint equation be valid is 

U 

UA 
« or 

11-10. « I 2-7 

which may be verified to be consistent with the dispersion relation 

obtained below. 
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We shall now show how the constraint equation may be used to 

reduce the Boltzman equation by one more dimension.     Consider the 

quantity 

X2r-rc  = r-r0    + —   —     fe 
i - *     e ßar. 

which measures the deviation of the particle from the bottom of the 

well.    We shall make a transformation of      j~    from the variables 

0. t, p6, pr,  T to Q , t, p^, pr, x.   Keeping in mind the fact that 

X=  ■f(ri fi)    we may write the last three terms of the Boltzman equation, 

eq.  3,  as 

I 

0 

where     JL^  "   i^ (Ö, t, pfl, pr , x).    We may now substitute for the co- 

efficients p   and r.    Neglecting again A' ,  we obtain r =   £L from 

eq. A-2a and   fts-hiufX  from eq. 4a.    Thus we get for the last two 

terms of the Boltzman equation 

\. 

If    Y,   -    it   {6,  t, p0,  pr   + m    wr
2 x2),  eq.   8 equals zero so that the 

two r terms now give zero in the Boltzman equation which then be- 

0 

i 

comes 
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dt de \ d fo     Zfe 2*   I 
We shall now integrate this equation over    a.* dfr .   Thus the first 

term gives       g| ±_       .where      X   =/ 2rf c/vc/^.    In the next term 
dir . y 

we must be more careful as     0 = f(rt fB].    We will assume that the 

functional dependence of       zx      on f* + hf kfyf IB sharply peaked 

about    ff+fo^u/* **= 0       .    The derivation of the constraint equa- 

tion shows that if pr and x are zero initially that they remain very 

small.    Thus        i^       can be a sharply peaked function of these vari- 

ables.    Setting x = 0, now means that     6 -f{fo)   only because the 

constraint equation is valid and r is a function of pfr .    Thus integrating 

the second term we obtain 

6 

where    6-f(fo)   now.    The fourth term is odd in x, because 

2L- £X'= H-   fLJiL • jKi—LlI 

The first factor is a constant.    The second is even in x,  while the third 

is odd.    Thus the integral over dx gives zero.    This leaves only 

fo       a   tl 

Integrating this term now over dx dpj. now gives 

,.   _ 
3 fo 

where again we must use the constraint equation to eliminate any r 

dependence in p   . 
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The validity of the reduction of the three-dimensional Boltzman 

equation to a one-dimensional equation is justified more rigorously in 

Sec. 2.5, where the complete solution of the Boltzman equation is per- 

formed. 

If the magnetic field does not satisfy the Betatron 2-1 condition, 

but still satisfies     0 i  h <■ I     , then all the results presented in this 

paper are still correct,  because as shown in Appendix II, in such a 

system 
Pt 1 AB 

c 
h  - LAM 
r        c r 

where A^  represents the external field (i. e. , mirror fields or synchro- 

tron fields) and    Pi'fo' fa, •    (fo* corresponds to an equilibrium orbit 

at r0.)   Therefore if Pj   replaces pd in all the equations of this paper, 

they will still be correct because all the equations of Appendix I are 

the same. 

Sec.  2. 2 - The Basic Equations 

The Boltzman equation for the system is now one-dimensional. 

Setting       l    -   T   , we have 

dt de 2 fo 
2-9 

where the number of particles in an element     Jodfo is given by 

2-10 

while the coefficients   f)    and p   are defined by eqs. A-2b and A-3b, 

6  *  _^_- Itt -LAo) 
* hi»r \  r c        / 

2-11 

! 
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fe 
e_f   2Ajr   4 c 4   3^2  + e LT«  3A» _ e dc£ 

c    'dO 9e *& do 2-12 

Eqs.  9» 11 and 12 are still too complicated to be solved exactly.    We 

shall, instead, use a perturbation expansion,     T~   To  * ty     where 

Ta    describes the time independent, azimuthally uniform distribution, 

while     r,    , contains the   6    and t dependence, and is a small quant- 

ity compared to    %    .    This is consistent with our previous approxi- 

mations.   Thus JLü        ^yi. _lr o , while    fo-t    ,  by eq. 12. 

Thus to terms of lowest order, the Boltzman equation now 

becomes 

f e t^'   +    fa   a^   -   O 2-13 
30 *fo 

This is called the linearized equation because all terms are linear in 

T,     .   Note that   f0    __1      has been dropped as it is of second 
o fo 

order in    T,    .   The two first terms in eq. 12 may also be dropped 

as they are of higher order   than the last two.    More particularly, 

Az = 0 because the motion in the z direction is symmetric so that 

Iz = 0.   The first term may be neglected because by the constraint 

equation, eq.  6, r ~ pe   , while Ar ^  ^    ,  so that this term is second 

order in     7,     .   The coefficients  6    and p^    may now be written more 

explicitly.    They are 

fh.r   { r c ) 
2-14 
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where 

and 70 c     2Q 2e 
2-15 

Since Q multiplies     •/;    , in eq. 13, A',    gives a second order 

term and is neglected.    The rest of   0   is a given function of pff  and 

r, and through the constraint equation,    r = fffe) ,   is a function of pa 

only.    (AB is defined by eq. A-4 where now z = 0.)   Since pfl   is small, 

6     may be expanded as a linear function of pe     as detailed in 

Appendix IV.   The result is 

e = e0 k f* k = 
i-^.T1 \ I- * 

2-16 

This gives one coefficient of the linearized Boltzman equation, 

eq.  13.    The other coefficient is p0   .    We desire its explicit depend- 

ence on p.   and   ^   also.    It now proves more convenient to use Fourier 

and Laplace transforms as defined by the expressions 

2-17 

hi**) 
which imply the reciprocal relations 

\      (air)1 
an  £   e 

iU-lnf   (V"1' 2-18 
'"-i 
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where the contour   W   is chosen in the upper half-plane parallel to the 

I real      A -axis above any poles in    Y^        , or pe        .    See Fig.   3    . 

To find p     we consider first    </>   , whose transform is given as a 

function of   f    by eq. C-20 

f"1- 'Si f*'"U") Jf* 2'19 

and is valid only in the beam, and when the wave length of the azimuthal 

perturbation is much larger than the beam width.   Since      r=   Y. * r, 

and     'A      gives rise to an azimuthally symmetric     f       ,   dj =   dr. 
6 de      ■}& 

and by eq. 19 I 
2-20 

Next we examine the expression for Ae    .   From eq. A-5 0 

6       I   c      \r-r'\ 

! 

)r-r'| 

2-21 
_   e /Uo    c^q je-o'}  ^(6i fo) dodfe 

) T     /r-r') 

because the component of I along A9   is I cos ( 6> - 6»'  ).    This expression 

for Ae    will be substituted into eq.  15 for pö    and hence must be evalu- 

ated to first order in    ^    .    Higher order terms will be dropped. 

We need first an explicit expression for     i/'e =   -f(fo)   > valid to first 

order in    %     , where     ^"o - r 0  •    For r, the constraint eq. 6 gives, 

r - r0   --   ^ f0 2-22 
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the 

In the expansion of    6    in Appendix IV,  some changes must be made 

as we desire    0     to first order.     We now include A0    ,  so that the 

expansion will have    1* - £.*'•     as a factor.   Also we will expand 

r dependence separately to lowest order in r - r0 and then substitute 

eq.  22.    Thus using eq.  14 instead of eq. D-l and D-3 in Appendix IV 

we obtain 

and to first order terms, 

^- re - (r. **,f,) [a ^ —JTJT^ -r'TA^- ^i*'?') 

*    rudo     +_J -If'  -'-f^') 2-23 

=    u; __L  f£t  -1*') 
th*. [ r.       '      ' 

This term together with       ^   V'.   * ^     . must be inserted in eq.  21. 

Keeping only terms first order in      Y,      ,  we obtain from eqs.  21 and 

23 

c K,. C  / ' 

äöd', 
c**.(e-e')a&aft  2-24 

/r-r'| 

The   6    dependence of the bracket is only in   ^    and A\ as A'   ~  f, 

The results of Appendix III,  in particular eq. C-20, now gives 

Ao 
nn * 9l V,   ,   ^ :h 

m A'ln  t 
b.. f > 'r» ^.cp 

J f* 
2-25 
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The   ■/£    integration may be easily performed.   Since   ^   is normalized 

to N on the field  B    and p0   and is constant from   6   = Q to lit, j r0 äf9 

= K   where N is the total number of particles.    Thus transposing and 

dividing 

fhAT 
V?/l 

/'« 2-26 

Substituting 20,  23 and 26 into eq.  15 now gives 

'    ! "-'^.R^ / wj j (c 
€>*,]'* 

i' 
2-27 

-^/©'"^ 
As we will show, the pö terms in eq.  25 may be neglected. 

Eq.  27 is then proportional to 

(3) 
(where    J'u  -   H - j > c?  and    V^J« /    from the Schmidt     criterion for 

the neglect of the zero-order self-field.)   The term ——      outside 

or     & v   i<   ±- the integral is negligible if fu « ^»n.rr 

while for the positive specie      Ai/; c< C       is sufficient,  if the ions are 

non-relativistic.    Now consider the p& term under the integral.    By 

eq.  31,    j,    consists of two parts.    If the part proportional to   R (2). 

(eqs.   30 and 31),  is sufficiently smooth and involves only small pe   , 

so that     f0 cc }■ h-,_ r;;  ,  (   fu '■l   '•', C /„    for the ions) this part may be 
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neglected.   Using the other part of  r,   , and the identity of eq. 3-32, 

pd may be taken out of the integral and equals    L    .    Thus sub- 

stituting for   k  from eq.  16, if e - ü 
? 

« — — this term may be 
i-h r

tt 

h    c s'-f « 
I- h   To 

neglected.    For the positive specie, the criteria 

is obtained, which is well satisfied, because the constraint equation 

must be valid and hence eq.   7 must be satisfied. 

Thus eq.  27 becomes 

'BVln 

^r. de 
Jf* , 2-28 

JL    2   J.     -   ^llll] 

This equation together with eqs. 13 and 16 are completely equivalent to 
(18) 

the plasma system first solved correctly by L.  D.  Landau. 

Sec.  2. 3 - The Dispersion Relation 

We solve the equations using Fourier and Laplace transforms 
(21) 

following J. D. Jackson's       notation and method.    We multiply eq. 13 
-3 7r       ,&       -'i(lo-Jli) 

by     f    de f dt e to obtain after integrating by parts, 
'0 /j 

f^cli 
.; lo *\fii 

0 

:(n--lö)f^(oi)e"  ' •'niJocii 

I 2-29 

< **• (f 'o   <?" 
U*''Rf<Jlo<U= O 

On the assumption that  Si   has a positive imaginary part, the first 

term evaluated at t =öO  vanishes and the rest is -R (1) where 

*«)- L 
J1,V;'ff f,lo.i-)J!o 2-30 
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i. e. , the Fourier transform of the initial displacement.   With the defin- 

itions of the Fourier transforms as given by eqs. 17 and 18, eq.  29 now 

gives the result 

(ß{2}   -   '3f- t lA 

Z fo 
r* Mi\ 

\(2o -Jt) 
2-31 

From eq. 17. by integrating by parts,   /Mj --\l '/''and thus eq. 28 b ecomes 

fo*n-   -e'j  (ll)/t,Adf. 2-32 

r0 K 

Inserting eq. 31 into eq.  32, now gives 

f/^   i: r-v 'S fo Ap 2-33 

/ '-f 
Since p'n      is independent of p     , we can solve eq.  33 for pe 

IA 

f* 
\!i 

r* 

'h'K 

2-34 

I 

where    5)    and H are the numerator and denominator of eq.  34 respect- 

ively.    The inverse p0    , which gives the time behavior of pti    is ob- 

tained from eq.  30 and is,  using eq.  34 
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I e'lJl  ein.    }(2.n) 

TTff 
2-35 

Since the curve W may be closed in the lower half-plane of   /I   (see 

Fig. 3   ), we may evaluate the integral using residues, and obtain 

•   i §  (iJi) 

H (f) 2-36 

where the sum is over the poles of the term in brackets.   If the initial 

perturbation is sufficiently smooth, then     $(?,]}), will not contribute 

any poles and the poles will occur only for the zeros of the denominator. 

If the poles have a positive imaginary part,  then      fj   ~ e*       and 

the solution is unstable.    Since the above function  /■/ A^j      is defined 

only for   fi    with positive imaginary part as appears from eq.  29, we 

must find the analytic continuation of   ^/y)  in the integrand of eq.  35 

in order to find the residues.    To find /y/JlI     explicitly we must insert 

the value of   0    from eq.  16.    We then see that   ///—)    is not continuous 

across the real axis (viewed as a function in the complex fi   plane), 

because 

2;. 
iUaüe 

[Qrkfo] -Jl 
P- 
&- i<ro) 

.tir 
2-37 
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The /  function gives the discontinuity.    This shows that H, defined by 

eq.  34, is discontinuous across the real axis with a jump equal to 

sir t     ea</ 

k r0 tf 
Zt   f-ß < e 
If k 

2-38 

arc .-f t 

where we have used the J function properties    * (>(} = Jf'y, S(^n) - Smaind 

recalled that the integration variable in H is p&  .   Since the analytic 

continuation of H must be continuous, we add       AH to H defined by 

eq.  34 to get the form of this function valid in the lower half-plane.    The 

dispersion relations are now given by setting H = 0.    Thus 

e-£.kft 

O-l 
i /       oil 

To K* 
■:':!       - * i : 

fo 
J1 

air i e y 
*.*.] 

2-39 

In eq. 39 it has been assumed that     2 >o .    If    I i 0     then it may be 

seen that the first equation is unchanged, but that in the second there 

is a plus sign in front of the 2iri in the third term on the right hand 

side. 

Sec.  2.4 - Stability Criteria and Dispersion Relation Solutions 

In this section we will summarize some results obtained by in- 

vestigating the solution of the dispersion relations.    If one desires to 
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know only stability criteria, i.e. , the condition that ft    in eq. 18 has 

a negative imaginary part, so that the corresponding Fourier compon- 

ent is exponentially damped, then it is unnecessary to solve the dis- 

persion relations completely.    By means of the Nyquist diagram as 
(22) (21) 

elaborated by Penrose       and Jackson,        it is possible to answer the 

stability question by only evaluating certain integrals.   As shown in 

Appendix V, the number of integrals equals the number of maximum 

and minimum of the distribution function.   For a zero-order dis- 

tribution function with one maximum, the stability criterion, from 

Appendix Vis 

i*r)* vj*   >».crc 
2-40 

where 

W^ 

JW     ■>'-    £ 

(*rr A' 
d 

fo*  -   fo 
f* 2-41 

and 7^      , p      are the values at the maximum.   Since   3**»)  = n     the 

integral is not singular. 

For a Maxwellian distribution 

y t    -     -^ JTT (   AJTF e - -^ 
2-42 

we find from Appendix V, that     kf-f*   AKt  •    This together with eq. 40 

gives the stability criterion. 
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For a resonance distribution 

^ - JL 
•JTT r * ^ 2-43 

it is possible to solve the set of equations 39 exactly.    The details are 

in Appendix VI.    The result is 

I 
a =  -< üL. 

r *... r.» Al 
"J*-   H,. f r, 

V^ 
2-44 

When 1   is negative then   < -^ -,'  .    The criterion for stability is simi- 

lar to that of the Maxwellian distribution.    The physical meaning of the 

stability criterion is the following.    For a cold beam there is instability 

if the particles have a negative effective mass.    This means if   ^3 ot > cp 

Suppose then that this is true.   Then the growth rate of the instability 

is given by the second term on the R.H.S.  of eq.  44.    The first term 

on the R.H.S.  gives the spread in angular velocity of the components 

of the beam due to the spread in pe   .    The stability criterion means 

now that if the spread in angular velocity is greater than the growth rate, 

there will be stability, because the particles will have mixed themselves 

during the characteristic growth time so that any perturbation will have 

been washed out.    This effect, where a finite temperature effects sta- 

bility, occurs in many plasma physics problems including for example 

the two-stream instability. 
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Eq. 44 also shows that when there is stability, the oscillations 

are damped.   This effect has not been previously noticed.    The result, 

eq. 44, without the damped solution is similar to the result of Kolo- 
(9) 

menskii and Lebedev.        This damping is due to the additional term in 

the second of eq.  2-39, which in the case of one-dimensional plasmas 
(18) 

gives Landau, damping. For a pulse function this term is zero, 

3^ (8) 

because      —— - O    , and therefore N-S      who used pulse functions 

did not find this damping.    We note that also in the case of one-dimen- 

sional plasmas, the use of pulse functions leads to no damping and, in 

fact gives the fluid equations for longitudinal oscillations, which are 

known not to exhibit damping. 

Finally we use the results of Appendix VI, which gives the sol- 

ution of the dispersion relation for a pulse function of width    A    , 

A e„ 
f 
-J- 111 h'^ny 2-45 

v* 

(8) 
This result is similar to that obtained by N-S       and Kolomenskii and 

Lebedev. If       </'/= ^      , then the result is the same.    This occurs 

only when the beam is sufficiently thin, for then   g   gets large and 

£ä   -*> o    .    It is also true for large wave numbers for then   i^g ->o , 

as is apparent from Appendix III.    Since, by its definition in eq.   28, 

f*      may be negative for low wave numbers,  we see by eqs. 40, 44 

and 45 that even for a cold beam there is no N.M.I, for weakly   rela- 

tivistic beams.    As an example take the case 2 = 3, ,J"e|, *. /       9 *"ST 

—r 
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(^a   is obtained from eq. C-13) where 

I -L     -     _ 

For    y > 7 , the three lowest wave numbers are stable.    For    ?- /    , 

S^     =1.3.   In general,  S<]2     is a function of   I    only.    Our result 

differs from the other authors because the beam is free and is not in a 

vacuum tank which would shield parts of the beam from another.   Another 

contribution is that the validity of the constraint equation,  requires, by 

eq. 7, that the R.H.S.  of eq. 45 be much less than  V'*   e.    -   Since 

the beam minor radius is much less than the major radius, eq.  6, the 

constraint equation, implies that the first term in eq. 45 is much less 

than  0o     .    Hence the second term must also be less than    6,   . 

If     &   = 0, the instability growth rate is 

^   -  6). "- 

M 

U <i <*•     c 2-46 

rfi-    r 

and is valid only if this quantity is much less than    0.   . 

From the above results,  it is apparent that the criteria for sta- 

bility are insensitive to the precise shape of the distribution.    Thus 

the pulse function distribution,  which is simplest for computations, 

gives adequately accurate results.    We suspect that this holds true 

for many calculations in plasma physics, where the utility of the pulse 

function is insufficiently appreciate. 

In systems of azimuthal symmetry, p    is a constant of the 

motion.    Thus neglecting any azimuthal instabilities, in a device, for 

example, like the betatron,   A f0    in eq. 40,  may be calculated from 

- 
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Aft,  of the particlea at the time of injection, as it is constant.    When 

the external field is zero    f0 = /M#I/^ r •   Since r <» r0, the spread in p 

comes mostly from the spread of   \rt    .    The number of particles in 

a range duj    is    ^ a kT * ~ liir kfP*-    ^     "**'    •    Hence the number of 

particles in a range d p9   is £. 
yi/     = ( ! Y/A p    i^hrr.' 
Nr    (-r.afcTH,»:*/   c 

and comparing with eq. 42,     h^-    ^aKi.feT r,*   .   Inserting into eq. 40, 

we obtain 

H   9   c   h.o *,o-l)*Te.v. 2-47 

1 

where the electron temperature is expressed in electron volts.    This 

expression is also valid for the ions if   W   is replaced by   vI = Jf±.    e* 
zirr, tt* 

Thus for a plasma at a given temperature, that is non-relativistic, the 

number of ions or electrons that are stable, is the same.    The quantity 

ot,    is    u _     i 
— and g is given in Appendix III. For ions or 

non-relativistic electrons, some typical parameters are tx«^ J^J^ 

T^ le.v. . Eq. 47 then gives V<. /.ax/o'6 which corresponds 

to 1/50 amp of relativistic electrons. 

Sec.  2. 5 - The Effect of Betatron Oscillations 

a.   Axial (z) Oscillations 

We shall next investigate the effect of allowing small amplitude 

betatron oscillations in the zero-order distribution function. To sim- 

plify the investigation we shall consider first the (z) oscillations and 
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then the (r) oscillations.   We will show that these oscillations have a 

small effect and give a negligible contribution to stability. 

This result differs from the investigations at MURA as reported 

by Nielsen et al. <30)      They define two quantities    AEp and    AEZ , 

which give the spread in beam energy due to a spread in p^   ( 4 Ep) and 

a spread in betatron oscillation amplitude (  4EZ).    These quantities 

may be obtained by expansion of the Hamiltonian. eq. A-l.  since these 

energy spreads are small.    The quantity     4 f   - 4     and    äE   -  ll 

Therefore the square root of the L.H.S.  of eq. 40 is proportional 

to AEp.    (     ^a = ^a    in eq. 40 to correspond with Nielsen's equations.) 

Nielsen et al. now remark that the effect of the betatron   oscillations 

is to add a     ^ Ez term to the      A Ep term ,   so that both terms 

contribute equally to stability     .    This result is clearly different from 

our result, given below, eq.  57. 

By neglecting the pr and r terms in the Boltzman equation, 

eq.  1, following the constraint equation arguments given in Sec.  2.1, 

that equation becomes after linearization. 

*1 + ell + f.M   + hn ^H 
2t te o 2-48 

This differs in a few respects from eq.  13.    First, there are two new 

terms in pz and i.    Next   t    now contains a factor describing particles 

of small, but finite amplitude oscillations.    In addition   6   is not 

given by eq.  16, but now contains an additional term proportional to z2, 

which results from retaining the z2 term from AB   in eq. D-l.    Thus: 
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B* B0  - kfe      + &   i> ?3 2-49 
a r/ 

We shall therefore be examining whether this additional variation in B 

will add to the variation in   0   due to p0  and hence add an additional 

term for stability in eq.  39.    We also need the value of the other co- 

efficients in eq. 48.    We have from eq. A-3b, for the non-relativistic 

case 

foz~e  Äf 2-50 

Keeping only first order terms in the coordinates we obtain pz 

from eq. A-3c, 

ev»    h **£ l/■o^  1*   a     -  '« ^0
;'j1 , 2-51 

c 

From eq. A-2a 

t =       f* 2-52 

We shall also assume that 

t)      r ^M    [(io-JU) 2-53 e 

This will give the same stability criteria as an initial value 

problem.    Eq. 48 now becomes 

3 fa 3 fi 
2-54 

where the a's and b are constants independent of p^,  z,  and are 
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i   =   lie. -h— 
a r0

a Qa ~   *vi   I/".*  h 

r' 2-55 

D 
G 
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0 
We note that we are forming two separate expansions.    One is 

of    T   in powers of    f .   The other is in powers of z, p   , p  .    Thus 

since we have kept only the first order terms in z and pz for the last 

two terms in eq.  54 to be consistent we must do the same in the equa- 

tion for   r,    .    Thus since the zero-order Boltzman equation is 

1 S/V 3? 2-56 
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a, =   e;Z aj= ~L 

we have 

_ a3 ^ 1^     *   aj fr Uli = o 

Note that   ^  is assumed independent of   6   and t and therefore the othei 

terms of eq,  56 are zero.    The solution of eq.  56 is evidently: 

%= A -f (aii-1 +a; j>A where A may be a function 2-57 
of P » . 

We have now given eq.  44 with the z and pz dependence of all the terms 

given explicitly.    We also know that the solution of eq.  54 when the 

terms approach zero is given by eq.  31 with R (2) = 0.    This is suf- 

ficient to solve the equation. 
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We have ignored self-field terms in the expressions for pz and 

z that give first order terms in the perturbation amplitude in eq. 48. 

z has the self-field term A'z whose neglect may be justified because the 

use of  T,   obtained from the solution of eq.  54 gives zero for A" .    This 

justifies the remark made above, that Iz remains zero during the 

N.M.I.    The dominant self-field term in pz is    ii£.' , which has the 
3-? 

same z dependence as the dominant external vector potential, and is 

therefore ignored.    This means that we neglect the transverse space 

charge force. 

The solution of eq.  54 proceeds in a straightforward way using 

the method of characteristics.    This solution is then inserted into eq. 

C-2 to obtain the dispersion relation.    These details are in Appendix VIII. 

The solution obtained there for   ^ has been verified by insertion into 

eq.  54 directly.    The result is that    £     in eq.   39a is multiplied by a 

factor 

/ -    .oos   I3h 2_y 

This is equivalent to multiplying  V   by this factor.    Examination of eqs. 

40. 44 or 45 shows that this has a negligible effect on stability.    Thus 

the inclusion of the axial betatron oscillations does improve stability, 

but negligibly. 

b<    The Radial (r) Oscillations 

Using the above procedure for evaluating the z betatron oscil- 

lations we shall now evaluate the effect of the radial betatron oscillations 

on the N.M.I.    We shall,  for simplicity ignore the z oscillations in our 

treatment. 

' 
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The linearized Boltzman equation is then: 

This is just like eq. 48, but now we have substituted r for z. We now 

write the coefficients. 6 now has first order terms in r - rol so we 

shall drop the second order terms.   By eq. A-2b 

D 
Hr(  r c       )    • 

Expanding and keeping only first order terms we obtain 

0=   eo   *  Jo_  -  k(r-r.) 2-59 

pa   is given by eq. 50 and r.like eq. 52 is obtained from eq. A-2a, giving 

r=   &■       .   Again keeping only first order terms, we obtain pw from 

eq. A-3a I 

'• r,3 

To simplify the calculations, we will define 

2-60 

r-r«   a» r-r.     -    fo 2-61 
^ V0  (l-h) 

Using eq. 61 to simplify eqs. 59 and 61, and using also the Ö , t depend- 

ence of eq. 53, the linearized Boltzman equation takes the form 

d* 2"62 
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where the a's and b are constants independent of r, pr and are 

I 

i 

i: 

i 

40 

r0 ^ 

a. =   e c ; X  -=  r-r^ 

2-63 

Since eq.  62 is a partial differential equation in r, pr, we may- 

consider p6  = constant in eq.  62 and hence dr = dx.     k is defined in 

eq. D-6.    We note again that we are forming two expansions.    One is 

of   T   in powers of  ^ , and the other is of p. ,  r.     in powers of r - r0, 

P« ' Pr*    Thus since we have kept only first order terms in x, pr for 

the last two terms of eq.  62, to be consistent we must do the same in 

the Boltzman equation for   ^   .    Thus 

D f.  2^   +   r   ^ o 
or r 2-64 

I 

I 
•/i = /l^, f/q,*' + a^/j is a solution of eq.  64, 2-65 

D where Ap may only be a function of pa .   Knowing the form of  "^ given 

in eq.  65,  and the dispersion relation obtained when the r - r0, pr terms 

approach zero (as given by eq.  39), we can now proceed to solve eq.  62. 

In writing eq.  62, the first-order,  self-field terms  Ar',AgtAi   </>' 

in r and pr which contribute to the first order Boltzman equation, have 

D 
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not been included.   This may be justified in an approximate way. 

Consider first   r.    By eq. A-2a, this contains a term  A',,   which is found 

to lowest order by integrating   ^    , with a factor   pr .    Looking at the 

solution in Appendix IX found by neglecting  A'r , we find that  A'y   is 

indeed small, for the contribution to  A'    is obtained only from a term 

odd in   pr   and even in   x.    The largest such term is the third term in 

eq. 1-13 or 14,  and therefore   A'    has a factor r , which allows 

us to neglect it.    This means that the perturbed vector potential is small 

because the transverse currents that cause it are due to particles which 

have slow transverse velocity relative to the angular velocity. 

The other neglected self-field terms are in   pr .    The largest of 

these is     _!£'    .    The major contribution to this term will be a term 

proportional to   x, which is the same spatial dependence as the external 

dp' 
field.    Thus since the zero-order potential dr 

, is assumed negli- 

gible, we shall also neglect this term.    This means that we are neglect- 

ing the transverse space charge forces. 

The solution of eq.  62 is carried out in Appendix IX by the 

method of characteristics.    This solution has been verified by insertion 

directly into eq.  62.    The result is that   Vo   in eq.  39a is multiplied by 

a factor 

I    -     11  ^    II 
9   / - *    r/ 

/   +  1 ^iLL 2J 

As is more clearly seen from the solution 1-22, this shows that the 

effect of the radial betatron oscillations on stability is also quite small. 
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The denominator is unity if eq.7 , the condition for the validity of the 

constraint equation, is true.   This formula thus suggests that as the 

constraint equation is violated, the instability growth rate slows down, 

presumably because energy is also being put into the excitation of 

radial betatron oscillations. 

I 



/■'• 

i 
i: 

i 

i 

CHAPTER III - TWO STREAMS 

0. 
[] 

In this chapter the dispersion relation for the N.M.I,  of 

counterstreaming positive ions and relativistic electrons is derived. 

The same formalism is used to derive the dispersion relation of the 

longitudinal oscillations of thin beams, which is different from that 
(5) 

derived by Finkelstein and Sturrock.   To show the consistency of this 

formalism, the dispersion relation for infinitely wide streams is also 
(19) 

found and agrees with that found by Bludman et al. 

43 

Sec.  3. 1 - The Negative Mass Instability Equations 

In order to find the dispersion relation for the N.M.I, for two 

streams, it is necessary to write the linearized Boltzman equation 

for each stream.    Using the same approximations as made above, in 

Sec.  2.1 and 2.2,  where the single stream is discussed,  we obtain 

again eqs.  2-13 and 2-16.    The restriction on  ^    may, however,  be 

greatly relaxed if we assume a neutralized beam, for then there is 

no zero order transverse electric potential.    There will, though, be 

a first order electric potential due to the fact that under the N.M.I, 

there is a transverse motion of unequal amount for each stream. 

However this term, of first order in the perturbation amplitude (-t) 

if inserted into the constraint equation through eq. A-3a, will give a 

second order term in the one-dimensional Boltzman equation 2-13, 

and hence is neglected. 

The procedure is to solve the linearized Boltzman equation for 

each streani and use this perturbed distribution function to obtain 
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the perturbed potentials, A' and   (p '.    These are inserted into the 

equations for p^    for each beam.    This results in two equations in 

the two unknowns p^ + and p9   -.    The requirement that there be a 

solution implies that a certain determinant be zero, which gives the 

dispersion relation. 

In stead of solving the Maxwell-Boltzman equations of Sec.  2. 2 

as an initial value problem as done in Sec.  2. 3, we will assume that 

all the perturbed quantities vary as      e' .    This will give 

us the correct dispersion relation for the growing solutions and will 

therefore be sufficient to find stability criteria.    The Boltzman 

equation, eq.  2-13 now gives after solving for    r,^ , 

3-1 
11(6,  -f) 

Next p0    must be evaluated to first order.    By eq.  2-15 we have 

for particles of charge   e   and velocity    \f& 

-  e 2f 
30 

3-2 

By eq.  2-25, we have for A'    , neglecting p      as justified in Sec.  2.2, 

a4a 
3e 77   30JU ^c3 / 

3-3 

-   M    9 

ro    de 
YJL *,. -   e 1 ***.-]* f6 
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Since A^    is independent of pe    and   '/i     is normalized to -4L     , 

obtain 
aTr we 

^      /> 

Also 

If'r      tl       d     fl*    -*   )di* 3-5 

Or C 

Since the  6    dependence of all the above    quantities is  e'/e we obtain, 

c   r0 J ' c   r0] 

^ (Sifted fo  -e_3ft)nclfo\ 
3-6 

We have written a--   / +  _M  f i/Jn^ q   and droPPed one term be- 

cause     -^ o- I    .   Also some subscripts have been omitted. 

For pe_ we obtain, 

?/i -llAV-liv* ±1 %1Adft - e^- 1 ( tlAcffo 
Tu 

+ eilh fr^fo   - iljtmJtfe\ 3-7 

fa j{ <j  o-c* 5   FT5"     /    ' 

Inserting the values of   ^   and   t   from eq.  1. we obtain from eqs.  6 

and 7 after writing    f-   - ^ ^ /   _   i_   §     l^.1 

(T c 9   «re» 
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vf Ö.    - ■fl 

fo 

and 

A 
0 if e'-f 

Note that   f9+?.   fj*      is a constant independent of ptf . 

To simplify we rewrite cqs.   8 and 9 and define 

'3, 
T0 

o.-4 
thus 

Äu=   fo<   Oy        -("Ofo-   0. 

or 

f.-5    -Hfo^O,     * -L fr. 

h+(i- o*)      * h.{,u)D- =0 

46 

3-8 

3-9 

3-10 

3-11 

3-12 

which are two homogeneous equations in two unknowns.    For a non- 

trivial solution the determinant of the coefficients of       fa^       ft _ 

must vanish.    Thus we obtain 
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\Oef\ =    (/- D+)(l- L; D-)   - (her 0. 0**0 

or 

/ - /)+ - _L o- 0^ o. =o 3-13 

In order to examine this dispersion relation more definitely, the terms 

in eq. 13 must be explicitly evaluated.   By eq. 10, 

*f*      Jfe D.    =    e^ 3-14 

Ö.   -Jl 

and by eq. D-Z and D-6, to first order in 
Po 

e. = ö.. >~— /--i- - ±-\fo 

=  &..    -kfo (k>o) 

3-15 

Thus 

d t'o 

Using now a pulse function for    Vie      ^-(  *        *>      A 
' ''{riTt       fl> i .£. we obtain 

fo *A 
i 

n =   A/a'ij -^. 
3-16 

aTr r.     fa - JJJ1- /fe. A \a (See Appendix VII) 

It is clear from eq. 15 that    h. K    ia a meaBure of the Velocity 8pread 

in the beam.    It is therefore more instructive to write 

I 
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Ä6 =   k.A. I Ä- 

irh.n*-! i-H 
i 

3-17 

or 

and obtain 

0- 

r/\e = 6\r, 

CJot 

3-18 

ca v got  

3-19 

it*.)*   -^ -r.ff 
where   V. =   f 9^     and       V = _*L  _ll_    .    The appropriate minus sub- 

scripts should be appended to all the appropriate quantities.    The gen- 

eralization to D+is obvious.    Here   r-l     , and we need only append 

the + subscripts.    Thus, eq.  13 now becomes, after dividing through 

by    V= V- 

I _ ►»1 + 

3-20 

This equation is of fourth degree in   Jl    .   Since this is true even with- 
I 

out the third term, that term will only modify the value of the roots re- 

sulting from the first two terms but not change their number.    The 

third term may be neglected if   V    is small enough as appears from 

the discussion below.    A plot of this equation with the neglect of the 
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third term on the R.H.S. of eq.  20 is drawn in Fig. 4,  where 

P ( r« T) denotes the two terms on the R. H. S.  of eq.  20.    The 

solid line denotes the region of validity of the equation, i.e. . for 

ru^       near    I/;    or    ir     .    The dotted line would appear if the equa- 

tion were taken seriously in the rest of the domain of        H. ^    . 

Under the assumptions used in deriving eq.  20, we will, show 

that it may be written as two separate equations.    There are four 

roots,  of which one pair is near      u,      , and the other near    vi   . 

These may be complex.    Since the beams are in a magnetic field at 

the same position and    0-'ill     holds,  we have    ^..c^^-    As 

long as the ions are far from being relativistic,    i/". y> u;    will hold. 

Consider this case and the pair of roots near \f .    Eq.  20 then be- 

comes 

I   _ 

(4vV)*  - (ir, -r.nj1 '/ 
**  /3-21 

Two more terms in this equation may be neglected.   In de- 

riving the constraint equation the magnetic field due to the beam cur- 

rent was neglected.    This means that    ^ /  .    Since   ^.c=^^ 

this implies also     .g £ ^ .  and hence    ^ , /    and we can ^^ 

the third term on the R.H.S.  of eq.   21.    Also since    ^^c    , the 

relation ^ ^ /    implies that the first erm on the R. H.S.  of eq.  21 

is much less than   J.     and may also be neglected.    Thus we obtain 

[r0IL  - ^)a  =  (ty+y V> J21z  d^^.q 3-22 
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Since ^5^.-«/, we may again neglect the first term on the R.H.S. 

of eq. 23. The term in parenthesis may be simplified. If /% »M, 

then    7  S    —Vf—^TT   ~   I' ^3^   • 

Recalling now that        ot+ e —L  ./      We may write 

i 

50 

which is the same equation as the N.M.I,  dispersion relation for the 

proton steam alone. 

For the pair of roots of eq.  20 near    IC    , the equation may 

be similarly reduced.   Setting     r, ^ s: l/i    in eq.  2C we obtain 

y.    g    V.       -    Vbi- ^ . rt    _    ,        „a I 
D 

1 S.2*-!    \ -L   -   v*± 3/-L- -a) 

so that eq.  23 becomes 

v      JL Lja 3-24 

This equation differs from the N.M.I,  equation for the relativistic 

electrons alone by an additional term in the bracket, which contributes 

to stability if    h>±   .   If the bracket term is positive then there is 

stability even if  4 i/"_    = 0. 

Eqs.  22 and 24 must be consistent with the inequalities men- 

tioned earlier which are required for the validity of these equations. 

The validity of the constraint equation requires that    IV/;  -   r<. ul 
■^ I. j., Z   ' «__ t/-,   by eq    2_7      By the definition of  ^^    in e<iB    17 and 18j 
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and the constraint eq. 2-6, because the beam is thin, one can show 

easily that also     41^ « i^ .    These conditions are satisfied for the 

negative stream if   j^« /       and     V 9*.-« I    .    For the positive 

stream using    r^.C - >n+\/+    , the restriction is stronger, V^IC ft». 

s required. 

Summarizing, we find that the N.M.I, dispersion relation for 

two streams, is given by eqs.  22 and 24 when 

AI/; «\r± ) vj « ^   | rM.[r_ = h,tv< f r-ih_ ^ j 

are satisfied and the electrons are relativistic and the protons are 

not.    Eq.  22 is the same as the N.M.I,  equation obtained if only the 

protons were present, while the single stream N.M.I, equation for 

the electrons is modified by the presence of the protons.    If the elect- 

rons are also non-relativistic then eq.   24 reduces to eq.  22 where the 

+ subscripts are replaced by - and the validity of the equations is 

given by   ^ i< ur   ^ W5 « in-   ^ ,  and     h,. V* hx+ir,.  . 

Sec.  3.2 - Longitudinal Oscillations in Thin Beams 

a)   Restricted equation 

The dispersion relation for longitudinal oscillations of thin 

beams will be derived below as a limiting case of the two-stream 

N.M.I,  equations.    Since the p   terms in eqs.  6 and 7 were neglected, 

this dispersion relation is valid only for cool beams,  and for values 

of    r. Jk     near   v,    or    V,   .    This defect,  equivalent to a limitation 

on  W   , will be removed later in another derivation, where the pfl 

terms are retained. 
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Longitudinal oscillations describe a motion in which the part- 

icles move in a line along the average beam velocity without any 

transverse motion.    In the N.M.I,  situation the transverse motion 

is described by the constraint equation, <£r = r-;-„ = -— — fa and 

hence if JTJ^"^
0
  *    & r -* O    and there is no transverse motion.    This 

means that an infinitely strong focusing field inhibits the transverse 

motion.    Therefore, one need only let rf- -♦ Ö     in eq. 20 to obtain 

the dispersion relation for longitudinal oscillations.    Hence there 

exists only one dispersion relation for beams in a magnetic field and 

it depends on the value of    \-*    .    Since,  in general    '-*     is small 

and finite, the examination of the instabilities of contra-streaming 
(5), (7) 

particles using the thin beam longitudinal dispersion relation is 

equivalent to assuming 77^=0       , which is never legitimate.   It is, 

however, of interest to derive this relation because first, it will be 

valid for accelerators with strong focusing, of such strength that it 

may be considered infinite, and secondly,  as will be shown later, this 

relation is valid for thin linear beams, and has been derived else- 
(5) 

where     enabling the consistency of our treatment to be checked. 

Letnowj7^-»o    in eq.  20.    Since only   « *    (defined in eq.  17) 

depends on    \-H  , one obtains the result that 

«+^-/   , *_ -^   --L-      when        -^-r>o 3-26 

For this case too,  we will show that eq.  20 reduces to eqs.   22 and 24. 

Eq.   20 is valid when the inequalities 
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v; - re £ 
i 

i<.  <*+ c ui -ro^ « <*. cl _   c 
3-27 

hold, because then by the discussion at the end of Sec.  2. 2, the p. 

terms under the integral sign of eq.  3, the expression for A'tf   , may 

be neglected.    The neglect of the pe terms outside the integral sign, 

which arise from i^ in eq.  2,  implies that  AV+ac, when the ions are 

non-relativistic and    4i/: « JL , as also explained at the end of 

Sec.  2.2.   Applied to eq.  22, these inequalities require that I^M.«! 

When applied to eq.  24, the inequality 

VSi- « / 

results.    We note further that to obtain eqs.  22 and 24 from eqs.  21 

and 23,  requires that    wq^ /     ,  besides     l/giTLi tc /     .    We shall 

also assume that    ^^   »^     and therefore  J. *   / - Wa M. .    When 

all these assumptions hold, eqs.  22 and 24 result where   <* +   are 

given by eq.  26. 

In deriving the constraint equation, it was required that 

llA -r.^klilÜ^.    Since here —i- -^ o       ,  this inequality is always 

true and poses no restriction on the parameters. 

The longitudinal dispersion relation for thin beams may be 

put into a more instructive form by combining eqs.  22 and 24 (with 

the substitutions eq.  26) to give 

(^~rof )a "(4^     (v-"^~T ~(6K^ 3-28 
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which is valid when    4u; « c y  1/; «. c  , nr.^c.  , ^ ^ ,   t/oM.Ä/ and 

•      _L    <   A J/ hi - q 
y * 7     J wg^ 

LV M» 

AlA     » 

^ /    .    We record again the definitions, 

3 
, AV;         1        > a 1 ' 

a >' HI . r. 

For positive numerators, the two terms on the R.H.S.  of this equation 

are plotted in Fig.  5.    The domain of validity is indicated schematically 

by the solid line. 

This equation differs from the one derived by Finkelstein and 
(4) 

Sturrock,      by the inclusion of temperature terms,  but more important 

by the additional factor   j; " £^  4 ^g ( multiplying the 8econd 

term on the R.H.S. of the equation.    For small    1    ,  and large   V 

the   _Ji    term can be large enough so that this factor is negative. 

This will give an instability if    AUl      is small enough, as is evident 

from Fig. 4.    Thus, in strong focusing machines below transition, 

where the above approximations apply, the lowest wave numbers modes 

will grow.    This is a new instability. 

For a linear geometry which F-S consider, Sj = 0   as is evi- 

dent from Appendix XU.    Thus when   J^o    ,andV    is very small, 

this additional factor multiplying the second term on the R.H.S.  of 

eq.  28 becomes     -^      . As    V] h± _>/. the factor approaches 2. al- 

though when    V^ . )    .the equation breaks down.    Thus for very 

small   V    this difference means that the stable longitudinal oscil- 

lations near   \f_   are given by eq.  28 as 

roü   =   I/- i   c ?s     ((V1 3-29 

— 
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The F-S equation has instead the factor    rl   instead of    Z-1" .   Also 

their      ^= 2 Jin ^  -, which differs slightly from our g    given by 

eqs. C-16 and C-13 because the geometries differ.    We cannot com- 

pare stability criteria with F-S because eq.  28 is only valid for 

small   V  . 

When eq.  28 is applied to the longitudinal oscillations of thin 

linear streams that are very long,  it is necessary also to replace 

To it    by    —    , where any beam distrubance is represented by 

<P= ^VA g    **" • «This is true from the following observations.    If 

  = 0    i     Jr a r -/"o   - 0      •    Hence     r = r»    , a constant, in eqs. 

A-2b and A-3b, and these equations correspond exactly to eqs. A-2c 

and A-3c if the substitutions    re* $ , rt 0= i.     , f« = f+ l ft * *   >|#
=/4i 

To 7» 
are made.    Thus eq.  28 is valid either for devices of circular sym- 

metry with infinitely strong focusing or for linear beams without mag- 

netic fiel ds. 

b)   Exact equation 

Now we present a derivation of the longitudinal dispersion 

relation where the p^ terms of eq.  6, 7 are retained.    (We shall also 

assume that the beam is sufficiently thin,  or that the geometry is 

linear,  so that g= tj    and    Xt) = o  .)    These two equations are now, 

with the substitution of    "fV7*     from eq. 1, 

L Ml 

K   + fe 
-in.  du,. 

I 

3-30 

Z&Ldf, 
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(\r. 

3-31 

^"f 
IA Since eqs.  30 and 31 are linear in pa the simplest assumption for p1 

(the unknown quantities) which gives a solution for eqs. 30 and 31, is 

fet    Ä  «1 t>±ft 

If we substitute this into the equations, each equation is still 

linear in pg .    Let all the terms in eq.  30 and 31 be put on the left side 

of the equality so that they equal zero.    Since the coefficient of the 

constant and the coefficient of pfl must both be zero,  each equation 

now gives two equations.    There are now four equations homogenous 

in the four unknowns  a, i h,    .By setting the determinant of the co- 

efficient equal to zero,  we obtain a 4 x 4 determinant which is the 

exact dispersion relation. 

There are two simple relations which allow the terms to be 

simplified after the formidable number of terms of the determinant 

are obtained.    Note first that    Öt=9t-k±f0.    Then the integrals 

which appear in the determinant are of the two forms 
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I 6'   T f I Q  - Ji - kf 

Let    0, - — = X    to simplify the algebra.    Then,  since /^ 

>- kf 

r ^f'r   +7rlf7^ 
l*   d, 

\- kf 

it 3-32 

K / \-hf 
gives the first desired relation. 

To obtain the second relation, note first that 

/r^r ' r*C  "/^ -f* 
because   '/j    is zero at the limits   ♦ oo    , and is normalized to   -¥- . 

The second desired relation is now 

f*2l 

\- kf 

p*2l 

\- kf 
r M At 

h       V 

2* 

air 

V 

k f 

\    I   pit     , 
- - I  T If    <* r 

^d, k- ITT 

3-33 

V 
h ■ air 

y 
h- zrr 

—■■■"--■  
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where we have also used eq.  32.   f/U 5   0O +  - ^L]. 

Besides these two integral relations, the following relations 

are needed too, 

li. ! .._Ji = £±. ! ..     " s uS     , 
f.    ('c >'»*).r.)a jr/f.        r.    (c*%.r,f JIT/ O<.     \     ~JT^~p 

and 

^3. . A/ 

to* 
3'± 

3-34 

Till now all the equations are equally valid for the N. M. I.    For the 

longitudinal oscillations one must let 

34 so that 
I'h -* O     in eqs.  32,  33 and 

Many terms cancel so that the His 

1   and    /{+ =_Üi. -    ,    A--_^ -; 

persion relation has finally the 

simple form, 

t'li 2f* J f* 

$-1 r'}ie--fy^ if0^!7^. 
3-35 

If we use a pulse function for    £ 

the integrals, eq.  35 becomes 

as given by eq. G-l, to evaluate 

m 
V 

m\ c * g 

^.u^-[^r ^   -r0^-(,Vr 
3-36 

.   &* .„ & where    AW,,, ~ ,   , 
a^^r.    '     V     J77^ r> 

and there 1S now no restriction 

on the v  values allowed in this equation.    There are, however,  re- 

strictions on       f6 if eq.  36 is valid as written.    Since none of the 
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protons are relativistic   )+ * /    and 

- *v M^;' '-(-f ^7) 
T-/ 

implies that if   u; <.< c     that      jf* <<■ c 

rons are associated with one value of / , then 

Also if all of the elect- 

I 

and it is required that     ^ ^.    cC c     .    These limitations apply also 

to    f0     in eq. 35,  because the validity of eq. D-2 requires ft   to be 

small. 

It is easily verified that in the domain where eqs.  28 and 36 

are valid the equations give the same result.    The term   —   + ^^-r—'9 

becomes  | - / ^)    in eq.  36.    The criterion for stability may now 

be derived from eq.  36.   As is evident from Fig.  5, one need only 

find the minimum of the R.H.S. of eq.   36 and ensure that it is less 

than -*-    .    The result is that for     t-***.»**  ,    ^3 L — v.   ^A ' V '       J       In-  H-y h* J 

F-S give the criteria for stability, when   A'M. »Ki,    , as   yat   H>« 

for their equation which does not contain the factors   / _ /Jl rA*  . 
[ic ) 

Thus eq.  36 gives an improvement in the stability criterion for 

large f . 

Sec.  3.3 - Longitudinal Oscillations in Infinitely Wide Beams 

With the formalism developed above,  it is now a simple matter 

to find the dispersion relation for the case of infinitely wide beams, 

or beams with a perturbation wavelength -LL    or          ,  much less 
I '^ 

than the beam width.    Assume that the beams travel in the z direction. 

;V,:~:;7\C;^T" 
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and that all quantities   C^^A^.      have the   ?^      dependence 

given by   g 

or 

.    From Maxwell's equations 

Also 

and 

c   St 

e* -ih.K <■ iAAk 

The gauge condition gives 

7-/1     * -L d)   = 0 
c     ' 

or 

iktAh - 'i£.<PK*o 

Combining now eq.  37,  38 and 39, we obtain 

- '-m 
Comparing this expression with eq.   5,  we obtain 

as the charge per unit volume.    Thus in eq.   5 one may set 

/ I ^       «/TT.. 

TTpkl l-fjl it) 
From eq.  39, 

\ 8 ~-  ^ 
SI 

( c 
% 

3-37 

3-38 

3-39 

3-40 

3-41 

3-42 
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Using eq. 4, with the p$ terms included and eqs.  32 and 33, eq. 42 

is satisfied if the terms    vg VJOz <] = o       and the term       in 
•JT *"■• k- 3-rr 

eq.  33 is set equal to zero.    The dispersion relation is now obtained 

from eq.  30 and 31, with the proviso that the three mentioned terms 

are zero, and g is given by eq. 41.    Following the same procedure as 

outlined in the above section and solving the 4x4 determinant,  eq.  35 

is again obtained for the dispersion relation.    Using the value of g 

given in eq. 41, the factor   j - IZUJ]   is now cancelled and we obtain 

/- 

hJ 

iTTfo 

at' 
Ifo 

11 d fo hfe Jfe 

0     - J2   i    fo 

h.rv' 
0    -£.*   f* 

3-43 

%       is now normalized to 1, on the field ps ,  since the  -^- factor 

has been factored out.   Since 

* a-rr 

7 =   n     s    density of particles jrr. • V f 

in the toroidal geometry,  eq. 43 can also apply to a linear geometry, 

where 'n   is the density.   Also one may write        tl - dp , and normal- 

ize    %      to 1 on the field p? so that each integral becomes 

where    Mf = \rr,^t   M.- ^h .   Making now a final change of variable 

and letting    f± =   v*     , nnd normalizing     "H,      to 1 on the field   v^    , 
M 

and letting      J^3    '   , eq. 43 becomes 

kl (v. f* 4 ^^ 

h -1) * ** 
3-44 
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where ^a
± =    ^Üii!   and i8 valid when    6f.Kto.cr tP «^c r. 

Note that the actual velocity of a particle   V    is given by   l/± = i/"+ + / , 

If the positive beam is at zero temperature and moving with 

zero velocity, then the first   integral in eq. 44 reduces to    -^      and 

AA ■    .*       . (18) -"* 
eq. 44 is identical to a result of Bludman,  et al.       as shown in 

Appendix X. 

The reason for the additional factor j-f^Jj^l. that appears 
\tc j    rax 

m eq.  35 for thin beams,  but not for infinite beams, as in eq. 44, may 

now be noted.    It    arises because the force between two small elements 

of a thin tube, far apart,  moving with velocity    ^ [g ,  is decreased by 

the factor     /„,    ,  because the electric field is decreased by this 

amount.    The decrease arises because the force is like that between 

two small charges and is    ~±        The longitudinal electric field is 
a 

invariant, hence the field is obtained by writing   E-    —    .where   d 

is measured in the rest system of the charges.    Since in the lab system 

this distance is observed contracted, i.e. ,    .£! =      ^    , We obtain 

F = 
>» ^ a '    ■lhe wavelenßth of the perturbation   \=   H.     ,  cor- 
^1    ^ -Ta k 2 

I 

responds to       ä^     .    The forces and the electric fields are the same 

whether there are actual moving charge clumps or a nearly stationary 

charge fluid where the clumps appear to move due to the phase velocity 

of the disturbance because the charge density, only, appears in 

Maxwell' s equations.    Thus the factor     ^     appears for the thin 

beam.    It is also possible to show from the formalism of eqs.   30 and 

31 and the equations following, using    E*   -V(p-J.iA that the longi_ 

tudinal field does in fact have this      ^        factor for the thin beam 

case. 
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In the infinitely wide beam situation, the elements are two 

plane sheets, the electric field is      £"= -ITTCT , and does not depend 

on    r     . nor does the force,  so that the factor     /„*,     does not 

appear. 

If only one beam is present, then it is possible to check our 

I additional factor   /-   (—-*)   , by making a Lorentz transformation 

from a stationary 'beam' to a moving one.    To simplify the algebra, 

the beam is assumed cold.    We shall assume the ion beam to be 

absent.   For small currents, i.e. , ^J ^ I     , 1 " (T^
2
)*-*;?-   

The re_ 

suiting equations derived from eq.  36 and 44 are given in Appendix XI 

as eqs. K-8 and K-l respectively.    The details and the Lorentz trans- 

formations are done in Appendix XI and the equations are consistent. 

It is suggested that the neglect of the retardation terms adds a term 

linear case. 

J jL —  ' to   g   as defined in eqa. C-13 and C-l6, at least in the 1 ¥W 
I 
i 

i 
I 
1 
! 
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CHAPTER  IV   -   SUMMARY 

The dispersion relations are summarized here (see p. 123 for 

definitions) : 

A.   SINGLE STREAM N.M.I,    (eq.   2-39) 

I- 
eag   ^ 

3 jO.-f-hfi k^o K3    2fi 

4-1 

Initial velocity distributions investigated: 

1)   Pulse function 

Dispersion relation (eq. G-3) 

4-2 

-a 
- Ö = 

+     ot 

Stability criteria 

'/» 

1  <0  or i£      _!.   > o      then       _^ > ^S^   w,0cro 

2)   Resonance function 
^ 

yV     A 

Dispersion relation (eq.  F-15) 4-3 
Jl -  ea 

oC 

/■ M,r,a 

-A     ±    vg^ (M^r.) 
o<  KJ 
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Stability criteria 

—   /O    or 

3)   Maxwellian distribution 

4> ^L   K.r.       if  -L>o 

-ft 
-V 

t v      l 

Stability criteria (eq.  E-17, E-18) 
57r   A^ 

p     A-* 

4-4 

V 
^ O       or        ^ s, 

)|I N 

u^  w,ecr.      ^   ± >' 

"V ''l* 

4)  Any single hump distribution      ij,  =    A/ F(f0)       /?/#>)/     -i 

Stability criteria (eq.  E-15,  E-16) -•D 

^a 

_   < O     or       _   > 

r 

m  Kcr.      if    ' > o 

-V 
4-5 

where        ^ =     Z^.^j  ^ 

B.    TWO-STREAM N.M.I,    (eq.   3-13) 

and 

"    |s   113 L. 1£L. 
t/ r« 

3^. 
^/^ 

e.« -kr?* -f 

C* 
('^jl /, eae 

\     J ea4-k+ fQ 

(.»g      I 9^- 

valid if Im /I > 0 
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2)   Pulse function 

Ta-   "     it, 

A/ 
jn A 

If*}*   | 

f* >  A 

Dispersion relation (eq.  3-20) 

I    _ fe   ^^^J +       ^■ 

1       c3ot- g 

y       (Avr+)»  - (v/, -roaj3 (Air)'  - (u-_ - r0^
a 

4-7 

^ -(u;.r.f)a].[(^-)l-(^-r.f;] 

3)   The above equation may be reduced to the two equations 
(eq.  3-22) 

i.    (r. ^ - ^t - i*^)3 

4-8 

Stability criteria (eq.  3-24)       ^i/^  > U   >*- Ca °<4 q 

(r0   Jl   - ^)>   =   (^ IT.)* 

66 

Stability criteria 

—  ~      —■' "(  ' J- )   <   O      , or if this quantity is positive, 

M 

vfut. g i    _ VM,a/i 
>» >v,+ Ü      !. ^-J) 

C.    THE EFFECT OF BETATRON OSCILLATIONS 

The inclusion of the betatron oscillations, non-relativistically 

shows that the R.H.S. of eq. A and hence \l in eqs. 2,  3, 4 and 5 
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should be multiplied by 

for   z   oscillations (eq. H-13)      j 
r." 

4-9 

for   r   oscillations (eq. 1-20) 

i *. i Kill JL  
*    (V  (/-h)»e.a 

if these factors are near unity. 

The stability criteria given above are negligibly changed by 

these factors.   All the above quantities are defined on page 123. 

Limits of Validity of Results 

The results given above are valid when 

and 
i 

/ H  0 

D.    TWO STREAM  LONGITUDINAL INSTABILITY   (thin beams,  eq.  3-35) 

i) 
I 

I TJ 

e'l 
c« IK •■* *  ro 

! 'i, ''„ 

4-10 

2)   Using a pulse function for the initial velocity distribution 

A/ 

' o +   ~ 

0 

>J  c    A 

for f 
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Dispersion relation (eq.  3-36) 

- m mi 
|v;  - r. ff - UK.)'        IK - r,£f-(iW 4.11 

Stability criterion when    v/1 ^< Lr      4 lA,    = 4 l/T,   =  O     ^Jh7.>>M. 

4, a yhy,c r 

Limits of Validity 

,1*o 

4f «  ^^ c r      if   v; «<" 

1 

The equation is also valid for straight beams,  if S. -^ 
r„ 

The   g   factor,  a logarithmic term,  is then somewhat changed. 

E.    TWO STREAM   LONGITUDINAL    INSTABILITY  (thick beam,  eq. 3-44) 

U/, pi 9 
% d u 

y - Si 

4-12 
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where t/« particle velocity 

d       •  
»*♦ 

ik.i -i fit 
and the disturbance has the behavior    —  e 

Limits of Validity 

A4»f ^ »Wf-cr  if    \r «c P ^ _L 

."i 

'■■ 

J 

'■ 

,_. 
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APPENDIX I 

The Betatron Equations 

We here record the relativistic equations for the motion of a charged 

particle in electric and magnetic fields using the canonical formalism. 

The Hamiltonian in cylindrical coordinates is: 

Using the six Hamiltonian equations of motion, we obtain: 

Tr      c     JT dr[   r      c     I c   3r 

b. 

r0      r     ao c    FIT c   30 
er    i^i"   f e yk ^Al. 

c      36 

P = en 
c     3? 

e 3£ 

ed<p 

A-3a. 

b. 

If the  betatron field is azimuthally symmetric, then it may be repre- 

sented by     ^^^ =  AgG    , where 

A. = B.r.(M (-£#.-') A-4. 

which,  for small  r-r0 t±,   usihgß* 7*A gives ßi=&//l\M-    Also equation 4 

satisfies Vi(6= VK/I/X^^O 
an(i obviously also 7-6= v- yx/\=ö .    Equation 4 also 

gives the familiar 2-1 condition at r = r0. 

.._ 
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For the self-fields we have: 
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J ir-r'l /c /r-r/ A-& 

Consider now an equilibrium situation. Ar^A^o, and the self-fields 

/».and <f are assumed small enough to be neglected. The equation of mo- 

tion for the * direction is 

fi m   **• M* A-6. 

Equations 2b and 3c become ' 

^   -.  ±.(f*  - i/»a) A-7. 

and 

f    r-r. and t are first-order small terms.    Thus to lowest order 

\rm*vt- -±.ßtrt, a constant. 

inserting these results into equation 6 gives 

ä(i*i)~-f-V0 sLä.a\ 
Tt \       ** 

A-8. 

A-9. 

With the same assumptions the equilibrium motion in the r   direction 

becomes, using equations 2a and 3a, 
ft=   * r 

M^ ^fr(-A.fH-(--^) 
A-10 

Note that V- -fo > M6   plays the role of a potential for theT and € 
r       c 

motion, and that    v/;     and     V     are of opposite sign. 
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APPENDIX II 
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The Generalized Potential 

We show here that the idea of a potential well applies to all magnetic 

fields with  O t  h <■ I    .    In particular we will show that 

£s   - I/I»  =   A - ±Aß B-l 
r c r        c 

where An  is the vector potential due to an axially symmetric magnetic 

field whereon  n <■ I     near the orbit but otherwise arbitrary, ^i' fo~ ft>0 

and ft correspond to the value of-^ at the equilibrium orbit r'r0   .    Thus 

eq. A-10 describes the radial motion if ¥9 is replaced by ?l   , and the r 

and ?   motion may be described for these arbitrary magnetic fields by 

the potential   V" =   " Jj iJ.fiß. 
r      c 

Proof:   We have 
-9 t*„tt   Ba= ^fr(

rM-^   ^|ffl   .   and     ß*-ß^y B.2 

and in particular if ßh is given by eq.  2 

j^ f   hJZtf ri *   - 1^-2] B-3 
r r      I a - h a -H 

Since the expression for Bi  in eq.  2 has been used, which is valid only 

near r0     Ao    in eq.  3 is also valid only near ra   •    The equilibrium orbit 

is found from eq. A-3a, with    ^f = r = ö        .   Since in the equilibrium 

situation A" At " 0     , and    A'Q ) (p are neglected, the equilibrium 

orbit is obtained from 
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or 

Therefore 

r3 

c\Tr 

e 2 A 9 

rrr.        c     r/ 

B-4 

using also cq.  3. 

It is now possible to evaluate J^o  . S-An        •    The substitution 
r        c 

and the expansion 

J.  =   _!_      -jL/r"r»)      *   HfelÜ (r-r.)a 

are needed together with eqs.  3 and 4.    Thus 

f* -*.A„ =   Pi ; /^    - e f^.*  f fl«r«" /'r'"' ■ 
r       c r c   J r a-h     ^ 

B-5 

B-6 

rl 
r c   a-h ^        r / 

a   _ft     ~ e B.r.  f i * (i'h)(r-n)*\ 
r        ^ ( ar/   / 

B-7 

AH as given by eq.   3 is incomplete.    Since   V'ft-- o    there is also a field 

component    Br" ' Ähs   .    This term is    - 0 tf« r„  >< eJ    .    When this term 
3 * car/ 

is added to the R.H.S.  of eq.  7, we obtain,  by comparison with eq.  A-4, 

f*   -   1 AH 
r c r        c 

Q.E.D. 
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APPENDIX m 

Equations for the Self-fields 

By eq. A-5 

; jr-rj 

We shall show below that when the minor beam radius is much less than 

the perturbation wavelength, that 

We write 7   as a fourier transform as indicated in eq.  2-18.    For a 

typical term the right hand side of eq.  i is 

'dfrdf.df,    C-3 

'k  el?'*i£l'"r',ct9 
Ir-r'l 

where A is independent of ß .   Consider now the physical situation.    There 

Jjr-r'l 

(■ 

is a thin beam of approximately circular cross section with a charge den- 

sity which varies slightly over the cross section.    There is a sinusoidal 

variation of charge as 0   goes through 2n,  which gives a corresponding 

variation in potential.    Since it is ^t that we wish,  it is possible to make 

a few approximations.    Since the beam is thin, the potential varies little 

across the beam.    Thus the observation point f may be chosen at the cen- 

ter of the beam,  i.e.,     r ' = r0  / f2 ' - O     .    Since the potential is approxi- 

mately constant over the cross section we shall also neglect the transverse 

motion implied by the constraint equation,  eq.  2-6.    Thus 

|r-r|- fr1 +r.i4 -arr«, oe^ie-e') *i^AJfr* \\ - k9c<na(&-a')r 
1 J     k L 3L     J C-4 
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where 

k3- -J^f «/ -(^lii3    if    (Li^i!« / 

Since   r * I.   for a thin beam, the 0   integral is a function only of 

(r-r.)' * ?3    .    The   r, ?     dependence oif"1 is weak.    Thus the surfaces 

of constant I are cylinders about the center of the beam.    Because of 

this symmetry, the potential at the beam surface is given by evaluating 

the integral at (r-r. )** ^. f* and assuming that all the charge within 

the cylinder is located at the line   r- r. ^ »o   .    This is similar to the 

approximations made in calculating the inductance of a thin coil. 

Therefore 

•.-' 

Je 

C-5 

C-6 

l' -     / -    JL 

and eq.   3 may be written as 

We have also set   /. , /# r - ;„     .    Next we make the substitution (?-©'-* 

which gives 

1-   ?        A       SL 1  1 ^«* C-7 

Since      c"" .- cou Zu.   / i ^„U,  and the rest of the integrand is even in 

cos «    , the sin*    term gives zero,  so that 

U0'A   f    c.±o C-8 

Note now that the major contribution to the integral occurs when the de- 

nominator is zero.    Thus the contribution of the exponent is small.    If 

desired, this term may be evaluated by expanding e
K
a  /** y- ^ .    This 

31  "' 

[ 
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will give a negative imaginary contribution to Jl   , caused by radiation 

damping, which is however smaller than the growth rate for the unstable 

case, as is seen by evaluating the first term in the expansion for the 

exponent and using eq.  G-3. 

The remaining integral is now evaluated by elliptic functions.    We 

have for  I- I   , 

r Co« ol et* 
tL 

C-9 

V 

where we have written   U s  rr ^ 0 
a        J 

Thus 

c-10 

This integral may be evaluated easily, for M,« 0,1   using elliptic functions, 
(29 

(25) 
For Ki=. a, 3... one makes the substitution 2=^r,<^ , and using pp. 181-2, 

these may also be evaluated in term of the elliptic fct. K, E. Since fe*/, 

we set E, k = 1 in these evaluations. K (k) has a logarithmic dependence. 

After some calculation we obtain 

U  =  K 
f 

C-ll 
L, = fC-a 

f 
Lr K - 3V 

3-r 

The integral in eq.   8, with the neglect of the exponent,  is 

h' [ co-a. t<<   otot. C-12 
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Since    cotN -£<!.. c«d*W  ,  eq.  12 may be written as the sum of inte- 

grals of the form of eq. 10, whose values are given by eq. 11.    Thus, 

after doing the algebra, 

£,=   *(*'*) EH'- *(*- *£?) C-13 

Thus eq.  8 becomes =  ^/^  r-     ^ /a i        . 

It=  €        /^  f, C-14 
a/-.. 

Thus through eq.  3, the right hand side of eq. 1 is 

R.H.Seq. 1=   /eU|.[ejj f^dretidfrd^df^e113'1^ c-15 

where 9^ £i .    The left hand side of eq.  1 may also be fourier analyzed, 

as in eq.  2-18 .    Since eq.  1 is true for any  2   and 71 , the integrands 

must be equal.    Hence eq.  2 is proved and 

II 3i - |L   .    ^ • ^ ep c-16 

Next we use the above method to evaluate an integral of the form, 

A(r',KKt')*    ef    ^(o-e') J drdedi dj?        c-17 
/       /r-r; 

By the same procedure,  eq.  17 may be written in the form of eq. 7. 

Since   ocu^r   e'*» «■"'"in eq.  7, instead of the term     e       , we have 
a 

£ *   e      •    Thus fourier analyzing eq.  17,  we see that it may 
x 

be written as 

where now 

A1*    = *Jl jjXA'(r,:h
tf'-lf*,ft)<ird*dfräf9dftS-™ 

JI        5 _ , c_19 
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Note that  gt > g2    from the concavity of the curve in Fig. 6 . 

For completeness, we note that if the f,*, fr,^ parts of eq.  2 and 

18 are integrated over, we obtain 

i»J» r'   e3i fi"°if°) tip 

A'* = <■%( J'"(fo) if. 

C-20 
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APPENDIX IV 

Derivation of    0 = g,, - kf* 

We here expand $  in powers of fy , where 

and AB is given by eq. A-4.   Since we assume that f, is small we keep 

only the first term in the expansion.    Thus we write 

D-l 

0 9 * do 
df*L. 

?* D.2 
l>t*o 

and we wish to evaluate     ||   .    Note that Q   is a function of f<, explic 

itly. and also implicitly through the dependence of r   on f<, . because 

r*Ht'>) through the constraint equation 

from the Hamiltonian Equation A-l 

r-r„ Also 

which gives   ** f(f>,j  ,    Thus 

li =      3   /JL\   Its _eAt\ Ji]  dftl~* Aal 

D-3 

D-4 

Using eq.   3, 

M?-^-)$r\^4^ 
^ 

1       (fo-&A\ 

D-5 
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now 

3r 

The crossed out terms are zero by the constraint equation.    Setting 

f. = 0      . which gives    r./i        .  and using the constraint equation, 

W^T^T'     ' We 0btain from eqs• 4 and ^ {8etting   r"-=r   > 

D-6 

u     -     T±(-T^   ^)    H    -fe    , (k>0) 
where we have neglected the slight f   dependence of A.  and also written 

V;» -£^.   .    Thus eq.  2 is 
h,c 

Ö =    Ö.    ~   k fe 

Q.E.D. 
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APPENDIX V 

Nyquist Diagram 

-m.    XT       •      .. (22) The Nyquist diagram technique as used by Penrose       is applied 

here to the N.M.I, dispersion relations,  eq.  2-39, to obtain generalized 

criteria for stability. 

To simplify the algebra we make the following substitutions in eq.  2-39. 

We write 

0.-kf9 = -yr and 

and obtain 

'-  /* 

dir    K 
E-l 

Z 

E-2 

where 

/c = E-3 

Note that    /f^tr*/       .    We assume also that     K* > O 

We will now find the condition that Jl has no positive imaginary part, 

as a positive imaginary part means that any perburbation grows expo- 

nentially. 

The quantity I   may be a positive or negative integer.    Suppose that 

6 a - IZl   .    Then eq.  3 is 

.       -11 
-/ =     [       3^   c/ir 

U- -   -A 
E-4 

■ 
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For fixed   2    ,  the right hand side of the equation defines a function of 

A    , for Jl   with positive imaginary part.    Let us call this function 

2*_ •    Thus 

3-f a* E-5 

Consider now the imaginary fi   plane, upon which is drawn the curve C. 

See fig. 7   .   As the dotted portion of the curve goes to infinity, it en- 

closes the positive imaginary plane.   By eq.  5, this curve may be mapped 

into a curve in the V   plane.   Since the function   ?.   is analytic in the 

upper half plane with no poles, the curve C is mapped into a curve D-, 

which is also described counterclockwise and encloses all positive im- 

aginary values of A   ,  some of which may be enclosed more than once 

by counterclockwise loops. 

On the dotted portion of the curve C,   ?. » 0     .    Thus to obtain an 

explicit representation of D-, we must obtain the value of   £.   for Jl 

rt. 

di 

with a vanishing imaginary part.   By, e.g. , J. D. Jackson       this is 

'        \r\ 

E-6 
d\r 

7*7 
The curve D- described by eq.  6,  is sketched in Fig. 8  for a Maxwellian 

distribution.    The curve is labelled with values of real A.   .    This curve 
(22) 

is from O. Penrose. The interior of the curve encloses values of 

positive imaginary A   .    For distributions other than Maxwellian the 

curve is asymmetrical,  and may have additional loops,  so that positive 

imaginary values of A   may be enclosed more than once. 



I 

I 

If   1     in eq.  3 is positive, then the right side of eq.  3 defines a 

function   %+ , 

/   9f 1 

I 

I 

I 

I 

I 

^fj= _^L J v 

7 

E-7 

H The CUrve C i8 maPPed onto the W plane by the function    ?t  .   Again 

the dotted portion of curve C corresponds to  iro. so that we must 

[j find the value of  ?+   for vanishing imaginary part of il   .in order to 

find the explicit expression for D+ on the plane    V    .    Thus 

E-8 
T 

The curve D+ on the u  plane is also counterclockwise and encloses 

all the values of positive imaginary A    , enclosed by the curve C in 

n theil    plane.    For a Maxwellian distribution, or any symmetrical 

distribution of   V    . the curves D- and D+ are identical.    For unsym- 

| metrical distributions the curves are related as follows:   If we replace 

p A    ^ ■-/l   in eq-   6'  We 8ti11 ßet D- ^t traversed in the opposite di- 

[J rection.    The function 2.  is now like  ?t except that the imaginary 

parts have opposite sign.    Thus if we now reflect the curve D- about 

the imaginary axis, we will get D+. traverapd in *ha ™ bww ^i,  irdversea in the correct counter- 

clockwise rotation. 

We can now establish the generalized stability criterion.    The dis- 

persion relation,  eq.  3 is   ?= -I       Ti,„=i<-*u I .    4-  J is   c        (  .    Thus if the point   ~l    lies inside 

r-, the CUrVe D' then we h^ instability.    Thus for stability 

I J 

^-   > -/ E 9 

I 
I 
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fH] ~ O for     + ? „ lft 
M*..-A E-10 

>where   ?„   is the left-most point on the boundary of D on the negative 

real axis, (see Fig. 8   ), because then the point 2 = - I  will occur out- 

side the curve D.    (In Fig. 9   this left-most point can be either point 

1 or 2 and this case will be covered below.)   At this point  ?„   is real 

and negative, hence the imaginary term in eq.  6 and 8 is zero.    Thus 

D 
0 

Since the imaginary part of £   goes from positive to negative as we 

traverse the point *?0   in the counter-clockwise direction on the curve 

. D, that is increasing values of /I   , the solution of eq. 10 corresponds 

to a maximum in f. 

Inserting the solution of eq.  10,   \r,~ -Jl into eq.  6 or 8, now gives 

for the negative real part of j?4 , 

D • 
Since eq. 10 is true,  eq.  11 may be transformed into an integral without 

I u (22) 
the principal part, (see O.  Penrose       ) 

# j., . r±LL. i 

0 

E-12 

This last expression is finite because   -f r f.   +  -f.'^-^)^-. Inserting 

eq.  11 into 9 we obtain finally 

/ (V« -w) 

H    m-°   m.^   *■* 
("■• -'? 
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as the condition for stability, for a single peaked distribution.    The 

left side of the above inequality is positive, and implies that if the 

width of the velocity distribution is large enough the beam is stable. 

{If   ty1 < 0   in eq.  3, then the /    in the inequality is replaced by -/ 

and the inequality is always true, so even narrow beams are stable). 

This condition is necessary and sufficient only for single peaked 

distributions,  such as in Fig. 8   .    For other distributions, as in 

Fig.9     , it is possible to locate all the points on the axis and by de- 

termining whether they correspond to maximum or minimum, one can 

determine the sense of the curve D running through them.    This is 

sufficient to determine whether or not the region between any two 

points lies inside or outside the curve.    One simply draws any counter- 

clockwise curve connecting the points in any desired order,  but such 

that the sense of the curve is correct.    We have not found any theorem 

proving this, but the reader may easily draw any number of figures to 

convince himself. 

We now rewrite eq.  13.    Using the definition of   f     , making the 

transformation to  f0    again, we now redefine a new F-JL* 22L "^normal- 

ized to  /     on the field   fig   .    Thus 

>   K 
le/-£-i£   d 
/(kr,-kr)i 

or 

I 

tb.r* f F.-F  clt 
>  Juiinii' 

V E-14 

^f'-rr 

..... 
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We define 

F«-F   if   s 

If* - fT (*?)* E-15 

Then we can write eq.  14 as 

which gives the criterion for stability. 

Penrose has a plot of ?/^|    , v/henff-I-Ul£j 

-JL' 

E-16 

F - ml* 

is Maxwellian, and 

E-17 
«t fjT 

The negative of the left hand side of eq.  15 is then the left-most point of 

this plot.    To obtain the correct units, one sets   w* = / ,  in Penrose* s 

figure, with the result 

or 

•(L.H.S.  Eq.  15) = 

A f -  ifj <* E-18 

using the right hand side of eq.  15.    This result inserted into eq. 16 

gives the stability criterion for Maxwellian distributions. 
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APPENDIX VI 

Resonance Function 

We solve eqs.  2-39 for the resonance distribution function, 

u     air. TT   JfT^ F-i 

This function is normalized to N, the total number of particles on the 

field   9/ fo  .    Jo simplify the algebra we use eqs. E-l and E-3 and de- 

fine  f = FK> so that     t0 - -M F  .    Thcn we obtain 

F = TT 

(V)"4' 
h3A '  
TT       (0. *■*■)*   t(leiy 

F-2 

Next we write    F'kf^   ki^i'        so that eq.  2.39a becomes 

/ ^     -Kit Vr   äyr 
F-3 

or 

F-4 

We shall evaluate the integral using the residue theorem.    This equation 

is valid only if A    has a positive imaginary part.    Thus the integral is 

evaluated differently depending on whether 1   is a positive or negative 

number.    Let us first assume that    }>0   .    Then the poles of the integrand 

in the upper IT plane occur only at   iT =   - ©.  ♦i A'        which is a pole of 

order 2.    We will evaluate the integral now by closing the contour in the 

upper  \r plane.    See Fig. 10 .    (Closing the contour in the lower half- 

plane is also permissible, but because there is now a pole due to -JL , the 
2 

evaluation of the residue is more cumbersome.)   Then 
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B9 

I    iV'^V «^ = AVi £     Res (upper half-plane) F-5 

where 

Res    / = sL K-^)* 
'      dv 

6.  ■'v 

(^f)(0.'r*^r(eo -s-uf 

Ö ♦"• 
U--W. 

dv [yr + a^o.** *l*T F-6 

=   LLil£Üi!l! t  £,' 
v--\r, 

Inserting this result into eq.  5 and 6 gives 

/ 
afe KA' 37r A' 

IT     (-Ö.   f.-A'»^1   f/A 

or 

Separating this equation into real and imaginary parts and setting 

^= _.r . 0. ^ 0-- _. +4'  give8 thc two equationS| 

A3 - &J  * kK = 0. 

3c Aß = O 
F-7 

F-8 

Eq.  8 may be satisfied by setting A or B equal to aero.    Since A'>O   , 

and we have assumed   Sl:>0   .  B cannot equal zero.    Thus the solutions 

to the two equations are /| - o i ß - * {ki<       or   IL -- - A' ± I/KT  .   Again 

since /l:>o , the solution is   A-i^fT - 4 '       ,  valid only if ViöTw    . 

Thus the complete solution is 

iU ä  + i [{Kk   - 6') 
F-9 
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U    I < O    , then the pole at -Jb    is in the upper half-plane and we 

close the contour in the lower half-plane.    The only pole in this region 

is at   »/"j = - Oj -t A'    .    The integral in eq.  5 now equals the negative of 

the residue in the lower plane because the contour is described clock- 

wise.    One sees easily that now 

Res 
-ia' 

1W = l/j, (-0, -W i JlJ3 // A-* F-10 

Since the integral in eq.  5 is minus this and proceeding as above we 

obtain again the eqs. 7 and 8 where   A'' -r—f   ' & , ß'- -:^,-- 4'  .   Again 

B' cannot equal zero because   A:>o      is assumed and hence A'*o   and 

6'=±^fkl< .or     JlL: A'ijKk 
■HI 

-A.' = A'-jKk valid only if VKF >A' 

Combining this result will» that of eq. 9, we have 

Again since    72; >0    , 

I 
(fiat   -A') VKA > 4' F-n 

and the plus sign is valid if    I >0    ,  and the minus sign for    I <&   . 

Next we solve the dispersion relation for the damped solutions. 

There is now an additional term which must be added to the right side 

of eq.  4 as is evident from eq.  2-39b.    Using the transformations, 

^ = J^  ^ f' ,  eq.  E-l and E-3 and    k A - A'   ,  this term is 
ATT 

\ 

I 

Jjr 1 

1 

F-12 
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We assume that   2>C     and perform the integration as in eq.  5.   Since 
A 
-    now has a negative imaginary part, there is a pole at  v^z-Jl  , 

in the upper half-plane besides the pole at ^.    Thus we have a te rm 

aTTi Res 0, +"' 
If 5 i/-. [(e0^;a ^"]* 

F-13 

l/-r fl 

additional to the Residue atv^ . given in eq.  6.   Inserting this term into 

eq. 4 we see that it cancels exactly the term in eq. 12.    The dispersion 

relation is now again the same as eq.  7 and 8,  with solution A'O   .    B 

cannot equal zero in eq.  8 because then A is imaginary from eq.  7.    Thus 

fromeq. 7, ß-±VE7C     or     *;=-*' *m        .   Since ^  is assumed 

negative the solutions are 

^'= -A' - VKT 
I F-14 

where the first solution is valid for all values of V?T 

Next we examine the solution for   I = -|2/.    Since the pole due to -A 
I 

is now in the lower half-plane we close the contour in the lower half- 

plane.    The integral eq.  5 is now equal to the negative of the sum of the 

residues.    Thus we have a term equal to the negative of eq. 14 due to 

the pole at -£  which again cancels the added term eq.  12. because that 

term has a minus sign when 2   is negative (see comment following  Eq.  2-39). 

The other Residue at    W.-y,     is given by eq.  10.    Inserting this result 

into eq.  4 now gives the eqs.   7 and 8 where A',  B1 are defined as above. 

Again, the solution A' = 0 to eq.  8,  gives real solutions to B. while the 

solution B' = 0 does not.   From eq.  7 we see that   B' = ±4i(k   or ßjni'^ä 

Since JJ.    is negative we see that the negative sign for the radical is 

I 
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valid only if ^Kk £ A'  .   Summarizing our results, the roots of eq.  2-39 

with a resonance function are 

-^   =    0.     *  I   (- A'   ± {i<~k ) 
I F-15 

0 
D 

for positive I  .   For negative 2  . the c   becomes -< . 

When K is negative, which will occur if ij*< O      in eq.  3, eq.  15 is 

still valid although the derivation given above must be modified.   In 

particular, the quantities  ß,ßrO   now and A^'^O  , 
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APPENDIX VII 

Pulse Function 

Here we evaluate the dispersion relation eq.  2-39, using a pulse 

function distribution for   h> , i.e., 

t for   ~A *  pa * A. 

otherwise 

G-l 

Eq.  Z-39 now becomes 

[B.-^M. (e,-i) -  kA 
a. 

k& 

or 

2-rrr, fj3 G-2 

Writing now /e- ^ . and-^ ^ =   W       , eq.  2 becomes 

^L    -   ^9^ fa.cr)1 

*?* 
G-3 

Note now that the second of eq.  2-39 also gives the same result. 

This is because ||L \ Ö  only .When flZl= * A   , which can occur only 

if  A^O     byeq.  3.    Thus eq.  8 us valid for )*,/l   positive or negative. 
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APPENDIX VIII 

Betatron Z Oscillations 

In this section the method of characteristics is used to solve 

eq. 2-54.    The dispersion relation for the N.M.I. . with the inclusion 

of the axial (z) betatron oscillations is thereby obtained. 

Eq.  2-54 is a linear partial differential equation in the variables 

* , ft   •    The standard technique for solving this equation is given in. 

e.g..  Cohen's "Differential Equations.■'(26,   The solution is obtained 

by solving 

«1 n 

d* in 

"<»»? a.f'" Mu -(aa t-h**)*** H-I 

The solution of the equation obtained from the first equality is «j^q^ 

s C, .    To find the other solution we use the last equality.    This contains 

f*   •    Using c,  . to eliminate  ^   . and eq.  2-57.  we find that t*Affr) 

and hence is not a function of ?    any more.    Thus from eq.  1 we must 

now solve,  after rearranging: 

—A + l&Jt£LLn = *•? 
i'} ■da 

d* &r ^^   K^rPf. H-2 

This is a linear differential equation for    f*   as a function of i 

Again using standard techniques as. e.g. .  in the book by Cohen. (26) 
we 

find for the particular solution 
1o t b+* 

V at 
•/«3(C( -4xi*) 

H-3 
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We do not consider the solution of the homogenous equation for which 

p? O    as it does not contribute to the N.M.I.    (Note that the first 

factor is independent of £   .) 

We next integrate the exponent.    Since  <i:,Jtt»>0    and using Pierce 

#121, 132      we obtain: 

(27) 

f • 

We can now see that the solution,  cq.  3, gives the right limit as the 

i ft   terms approach zero.    From eq.  2-55,  «i<lj=HÖ.     .    From the 

definition of C,    ,    max c, *= a;* />*  .    Thus Ali. ^ t/»3» ?M0/^   and the 

second term in E is of order   J^L     .    Similarly max^Sj /'j* = Jaa f1 and the 

third term in E is also of order   _£i     .    Thus the factors of  b    are of 
r» 

order   f      .    To obtain the limit of  ,//", as y>-»o , we may therefore let 

D -» o    in eq.  3.    The integration is easily performed to give: 

H-5 

which is the solution wc would obtain from eq.  2-54 setting all the -i   terms 

equal to zero.    Thus we recover the correct limit from eq.  3.   Any arbi- 

trary constants which appear in the evaluation of eq.  3, may therefore be 

resolved by noting that cq.  3 must give eq.  5 when 2-^ o .    ( Z1* is the 

minor beam radius, while 2    is a coordinate in the beam.) 

We continue to evaluate eq.   3 and perform the integration of the term 

in the bracket.    This may be done easily,  only if we assume the exponent 

E to be small, for then we can expand and write   e    ^ /*-£" .    By eq.  4 

since  -jhr * /    ,  we therefore require also ad «■ ^a1ai = Jh ö„      .    As we 
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shall see below, this implies that in unstable situations the growth rate 

should be much less than the axial betatron oscillation frequency. This 

is well satisfied for current densities of interest.    Thus writing ee*l*t'*J,2 

3 

we obtain from eq. 4: 

— / —   ^Wo~ 

we i 

vaJ(c, «i?3; 
'W. 

/,< .i 

Vajtfl] 
^)      H.6 

where   AJ|j)   is an odd function of ?   .    This eq.  6 differs from the brack- 

et term in eq. 3 by a constant     because    fQ^JLt ** j(i+*)clt   and differs 

by a constant, because although  t** l+X    two indefinite integrals differ 

by a constant.    To find this constant, we let 2 -» o     in the bracket term 

of eq.  3, which is equivalent to letting l-*o .    Integrating gives 

These other integrals are trivial and it is seen that eq.  6 differs from  [s] 

by the constant    —      .    We can now evaluate the ?     dependence of   •f 

by expansion of the exponents in eq.  3 which we denote   f VIN .    Thus 

In 

'•' • (i -fa;' -f 

l(t- -£■/, ''1.' 
a a» aj 
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Note that when  * - o.    f "Uj..  so that eq. 5 is obtained, which 

indicates that we have correctly chosen the constant.   Note too. that 

therefore   ^'V -*<, aa   ^ 0 , which fixe8 the branch of ^ 

function. 

We have kept only those powers of E which give terms  -a. .    Terms 

which give higher powers of   a.   have been dropped.    Eq.  7 contains 

terms proportional to   — , -£    • JL , P"1     TU    .. 
o« '   Q.      Q,    J   -    rhe terms proportional to / 

and a^only. cancel out.   If we keep higher powers of E. the terms in 

a'. «•    .  etc., would also cancel because as/-^o   .  f'1* _L   while 

em'    remains finite as/>-.*.    We have also denoted the origin of each 

term in small script beneath it.   Note that i"  is also a function of ^ 

through    c. - a.H^ a^  Thi8 c   wa6 a con6tant ^ ^ ^^ ^ 

right hand pair of equations in eq.  1.  but becomes a variable again, in 

the solution for    *>*.    This follows from the theory of solving eq.  1. 

In eq.  2. we have used the positive square root in writing a, ft-r 

SlR^jThus  P* in eq.  7 is defined only for positive    ft     [    U8ing 

the negative square root for   ft    , we find that sin" also changes sign 

(cf.  eq. 4). 

'To obtain the dispersion relation we must now insert V* ^.fnlLiIA 

into eq. C-Z and f and ^   represent perturbation quantities if   J^. 

Since we are considering only axial betatron oscillations,  but assume 

the constraint equation linking  r   and f,   to be still valid, the integral 

is only over    df* d* J i*       T-U..,, ,,. „.„ 
r»«*«.^.    Thus cancelling    (/»*    , the dispersion 

relation becomes: 

/ -   £.1^ )J\ 

I 
H-8 
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r0 is a function of c, , and hence is even in ^ fr . M^'
1
 is 

odd in e , while iT" 5«,^ is odd in f, . Thus the second and 

third terms in eq. 7 give zero when integrated. The term in 2^*^' 

-- i fi^l*'* is even in ^ and apparently odd in ft .As noted above, 

however, sin'' changes sign when ft changes sign and hence ?r.W 

^ft^-i-v"' is even. Also because Vi is zero lor large ^ all terms 

in fjjj without the factor u. Kivc ^ero in the ^ integration. Thus 

the terms in eq.  7 that contribute to the dispersion relation are: 

H-9 

The smallest term in this expression is   - /!     .If wc compute 

1,n     in eq.  7 to one more power of E,  we would gel terms «a.*3 p" j£ 
'''' a. 

Since we want the lowest order non-vanishing term in   /   ,  it seems that 

we should also keep  a. ^      terms.    However, all these terms are odd 

in   2     and hence give a zero contribution to the dispersion equation. 

We now integrate eq.   8. doing the   ch </,'t   integration first.    The 

2   . ft   dependence of   VC    is contained in a factor   */it     ,  which is in- 

dependent of   f0   . and as shown in eq.  2-57 is a function only of c,   . 

Suppose for simplicity we define 

N <-,     a^i' » Hi />/ '  i\, f>A 

for H-IO 
Ü 

n-i    is normalized to unity on the field   2   f^ 

constant.    Thus 

N is a normalization 

MfJidft = i 
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Since the area of the ellipse   C(* <*! p3 is    A*  '"'{^- l)J      , we find 

^I T" .    The integrations are now performed most easily by changing 

to polar coordinates.    Let 

a** Kliff  =a*r' 
with the inverse 
transformations 

2 = r ^wv & 

ftlft'' rt-**- e 

The 2t ft    integration of eq.  8, now becomes using eq. 9, 

i.j f <■ J±L—(Ll°2 + r^/ü^^e rtcc^e-fi.r^o-    H-il 

- <h ('' *) 
r cotG ■ 6 rJrdejSI 

where 
Ctrl'fl    _    QA^iO 

,   =     -l\_£   _L/zJ-_3).   - I'hjL* (.oof?) 

rfö 

H-12 

and 

r  = — /-   l3h II (.oos-) 
r V 

27) 
In the integration over &   we have used Pierce        «1176,201.    We have 

also used the values of   h, a*, a^    from eq. 2-55.The only difference 

between eq.  8 and the dispersion relation of eq.  2-39a,  is that now the 

number of particles is multiplied by a factor 

«H       I     -     l*h   Jl   (-OOS) 
r« H-13 

■; 
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Thus the effect of ?    betatron oscillations is to improve stability, as 

expected, but only by a very small amount.   Note that even though this 

effect goes as    7a   , it cannot be large for small wavelengths, because 

the equation for the potontial {C-2) and hence eq.  8 is valid only if Jk»/' 

We have assumed above that   /a„("faa «i     to make E in eq.  4 small 

so that    e   *:  Itf    .    By eq.  2-55 this inequality implies that 

jJl-iO.'jkfej    «   V/T 0, 

since 

ln-ie.   *-   ikfej &   In-ieJ* /Ufo/ 

H.14 

H-15 

Eq.  14 is valid if 

or 
A- le. 

{* Ö. 
«I Uf, 

fh   o. 
<-/ H-16 

This requirement is net for weak currents and small temperature spreads 

in the beam.   See, for example, eqs.  2-8 and G-3. 

I 
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APPENDIX IX 

Betatron r Oscillations 

Here we solve cquationZ-ÖZ following the same general pro- 

cedure as used in Appendix VIII. 

By standard techniques wc must first solve 

Apr    - ä)( 
a** 

d * UL 

«wv i-i 

The solution of the equation formed with the first equality U 

<****   *<*lfi-*s   C,     .    Using this to eliminate   ff      from the last 

equality, we obtain a differential equation like eq. H-2 but with    hy 

instead of     />?''.    Thus 

=        CJ,    (fl "I d% 
- 1ft 1-2 

I 

i 

The solution of eq.  2 is: 

**' b*    c/ - r ■ -t' SJL  «n 
0%        L 

><» « t«   At 

) df0 CJ dx 1-3 

This is the particular solution.    The solution of the homogenous 

equation again implies that   ?"'. 0 ,  which does not contl.ibute to the 

N.M.I. ,  but is a trivial radial pulsation. 
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This solution is similar to eq.  H-3, but since   y= f/pJ    ü.^ 

is also a function of    V       and thus cannot be taken out of the integral 

signs, i.e. by eqs. 2-61, 63 and 65 

l^-  iA^./    + /ulL.aaaX /' 

1-4 

0 

i 
We have reinserted the constant   C,    , after the differentiation. 

(27) 
Using Pierce       Nos.  121,  129, we can integrate the exponent 

in eq.  3 to get: 

D 

I We will now show that eq.  3 gives the correct limit,  eq.  2-39, 

for the dispersion relation as the radial betatron oscillation amplitude 

/^ O  .   From eq.  2-63,      a.a,-- [hh) fl/.    From the definition of C, , 

max C. *,»,/.    Thus      ^, ^   l>f* * l{,.H)e/    and the second term in 

E is of order       ^ .    The first term remains finite as ^-    is   * 

unity, and    (aj:  Jl - 2e.   ' 2 h &       is independent of    x       and    fr 

Thus the b term in E goes to zero and we can got the appropriate limit 

by setting b = 0 in eq.  3.    The integrations,  using eq.  4,  are straight- 

forward and may be done in closed form.    Note that the first term in 

eq.  4 is independent of x,  while the second is ~ x.    Thus the following 

I 
0. 



i 

I 

0 

i: 

i 

i 

i 

i 

i 

i 

i 

i 

i 

103 

two integrals are required for doing the integrations of eq. 3: 

/. 

/ *s.dt 

^    t   e 
f *s.J* 

a. 

1-6 

/. 
y e /Jt^ 

f a?   * aj a) 

We have again abbreviated if- 3 ^.(c.-q,^) . ^fow that the integra. 

tions have been performed over rfx^ the /V^Y* dependence of C, , 

is again inserted into eq.  3.    Thus     f^a,^     and eq.  3 becomes 

%* -   a- ^' 1-7 

That this equation satisfies eq.  2-62, with Y* o   , i.e.  b = 0, 

is easily verified by substitution.    The second term of eq.  7 will be 

shown presently to give zero when integrated over in the dispersion 

relation.    To obtain the dispersion relation   f,n     must be inserted 

into eq. C-2 written in terms of the fourier components.    We ignore 

the     äijfr       integration or if we wish, assume that   f,«   contains a 

factor normalized to one on the field    *, ^     .    The dispersion relation 

is now, after cancelling     ^)m , 

1-8 

_..... 
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For ease of integration we will define    f(a»Xa * "i/ry  where   X=r-r» 

as 

f 

A/ 

o 
for 

<:,r 

C. > 

aA(r-re)
a f a, ^ ^ a*f 

N is a normalization constant, and just as in the discussion following 

-Trhp-f3  .   Note that since f*i(i>,} 

done first.    The first term gives 

eq.  H-10,    ^s   A      ' where     At 

the      ardfr      integration must bo 

I = ±31: ( Mt 

•i.iii which is the same dispersion re 

second term of     T/JI        is facilitated 

The procedure is exactly the sam 

eq.  H-10.    We define 

with 
tran 

We can now write 

3-f a-f  9« .    <     9 
3c( aß 9c,     a»«   a 

as f may be regarded as a pulse fikict 

from 0 to   P      and is zero otherwi 

the r integration,     f,,       is a cons 

dr d fr *!.  K dlt d 0 

104 

a. 
1-9 

on as eq.  2-39.    Integration of the 

by going over to polar coordinates, 

as used in the discussion following 

the inverse 
sformations 

X =    ^ -a«.-« 6 

N<J 
^i  ft 

R   Ce-t 0 

1-10 

ion which is constant as R goes 

se.   Also   vc r-U —Iji.—and in 
h«r.(i-h) 

:ant.    Thus evaluating the Jacobian 
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and        f%*clrdfr 

-«, cptJX f\r f*[r(*)-s(*'f)] (^jgrR Cfi. ß    'CLo   R /tin. 9 >)Rd^ de 

I-ll 

We note now that   fr    is di-fined only for positive values.    To find the 

correct form of    ^A    for negative     fr      ,  we must go back to eq.  3 

and change the sign of the square root term.    In eq.  7 this results only 

in   j>r     changing sign.    Thus the sin and cos representations for x and 

fT     are valid as    0       goes through 2IT and the integral in eq. 11 gives 

zero so that the dispersion relation is given by eq.  9.    Thus eq. 7 

gives the correct dispersion relation, as asserted. 

It is interesting to speculate on the significance of the <f functions 

in the second term of   r,^ .    Owing to changes of   ^0   of the particles, 

the radial position is displaced.    This occurs for each of the tubes of 

particles   centered on different values of    f>0    .    The distribution 

function of a tube slightly shifted differs by a  ^-function from the previ- 

ous distribution.    This distribution is       ~ SCo* 6   ,  where the ^-function 

is on the surface, i.e.     S(R-f) , for a tube of radius   f   .    This shift 

however does not affect the density of particles and hence does not con- 

tribute to the dispersion relation of an effect,  which occurs because of 

9        electric fields. 

We shall now derive the correction to the above results due to 

finite betatron oscillation amplitude.    Since both terms in the exponent 

■  —"•; "■— 
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of eq. 3 are small we shall now expand the exponential in the same 

manner as we did for the z oscillations and then integrate.    We write 

e   *   I * i-  * £.*    and integrate in eq. 3.    We shall first consider the 

first term in      |j|      which is independent of x.    Thus using eq. 5: 

jilLL£jd* - =L=. ^■'fir* //.,) 

This result differs from the integral in the bracket of eq.  3 by 

a constant.    The argument parallels that following eq. H-6.    If we set 

x = 0 in eq.  12 we obtain zero, whereas from eq.  6 we have    -i 

Thus the value of the constant is found. 

Writing now j^ 

r for the part of  fln due to the first term of     J^    . we have 

r 
-J-   .(/-/] ^^   + -kill     f Ai- - "« , O ^£1* 
a° f1-^ a.q,a% [j ^1    a, Uj I_14 

ill   •'■J; '■;•       -«/i    t*.«;' 
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I".«;'     -'•/■ 

-.t'-r   i'/.    •'•/«    <Yf' ■i       * 

Ur-) v  ('-Oc.fe^'Jy 

fV     I*/. 

./l" K. 'i 

(a* « .)% 

«/•    '71' 

-^ ,J.J^ 

T 

In the foregoing calculation the last three lines are the result of going 

to one higher order of E than in eq.  H-7.    We have calculated terms up 

to _f   , a,/'.    Those terms which are odd in f>. or x will not contribute 

to the dispersion relation, eq.  8.    Thus the only terms in eq.  14 which 

contribute are: 

F in a   (q, u,)' 
1-15 

Next we must calculate the contribution Y    i.e., the part of 

vp|Adue to the second term of ~a  in eq. 4 which is proportional to x. 
O fo 

We again evaluate the bracket of eq.   3 by expanding the exponent and 

writing e    <t   I f f + JL        .    Thus we need the following 

expression: 

j   4 
«    JLÜ 

/■/ 

aw j 

 —— 
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— ...■   -' 

/f 

/JU. C.    ' 

(o.o,)1/. f»,   V 
^^-/j^-'.^^psp 

1-16 

3   («> MjjJ 

where as 

If wo now write 

usual    ^-'r^,-|a^y    J- ^(-cT-u-y.y 

then 

/i 1-17 

1-18 

(Note that cq.   17 reduces to the second term in eq.  7, for small x,   fr 

and    a,   .) 

Instead of writing out the expression  f,"    in full,  we will note 

only those terms which give a non-zero contribution to the dispersion 

relation,  eq.   8.     From eq.   10 we note that   |^      is even in x and   v 

Thus only terms even in x and   fr    will contribute.    Replacing   c(    by 

a»^' *- a, /'/     in eqs.   5 and 16 gives the    fr     dependence.    Since all 

the square roots are positive,  the equations are valid only for positive 

fr     •    Thus in eq.   3 we must substitute -NT for ^ to find the behavior 

for the negative     /;,    .    We find that the 4 terms change sign and so 
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does     oMyi'1   jli/   .  Thus the sT and   -aiv."'   terms are odd in  -vr    . 

while       x^iw-'       is also odd in x. Thus terms like the following give 

a zero contribution to the dispersion relation,   fr ti^'x, X, pr (ji^'>/)* 

fr -"*'    ^ f', t-ü-^'W i ft   yßetc. Finite contributions are obtained 

from terms like   X', ^f ^ ^v,"')' and     X^u^'xJ/V 

The expression E is of order      flo , /'    .    We thus find that 

J^~ is of order      f> 

1 
/(=    ' is of order     a. j>    P* 

jl j   (*e* A* isoforder   at f. a. f\/> * 

All terms of order a«," j>, (*; tf ».j ..)in      f^     must be odd and 

integrate to zero, because they must be compounded of the factors 

(di».   yj i  or   ^»-iv»"W ff       .    Thus the lowest order non-zero term is of 

order      y>a       .   There are also terms of order   a'y>* a,,'/'y etc. , which 

we will neglect because we assume        atc<~ f        .    Thus to terms of 

order 

and the non-vanishing terms are: 

I 

=      -_i  (a,x ' , Ja,/'/} 1-19 

i     -JL_ . a, 

I Collecting now the terms in eqs.  13,  15,   17 and 19 and inserting them 

into the dispersion relation eq.   8, we obtain 

LI 

D 
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1-20 

f  « 

We shall do the   eir dp   integration first.    Thus  fa   is a constant and 

cfr = ct K   .   The first factor is 

r - f[ i(Ct)d%dfr  =    I 

using the definition of 'f' given below eq.  8.    The next factor is 

C^'ö /ec/^ 

We have evaluated the integral by changing to polar coordinates as de- 

fined in the discussion following cq.  8.    Finally, we integrate the last 

factor, using polar coordinates again, and eq.  10.    Thus, 

x, - f( ÄL d.J*ärr 

Equation 20 now becomes, using Ii, I2,  and U, 
=   -_3 

3 ^z« t> 
J.    h,vt/l-h)<l).0i 

lfo 

A^   is normalized to N on the field Ö  f0 .    Defining A***.^, where 

%     is normalized to one on the field    fa   ,  and inserting the values 

of a^nd b from eq.  2-63, we obtain 
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in 

'        jTrr.,    •    :'" 

Writing 
I to avra 

I1 

we obtain 
^.C*      ATT); 

1 ^       «r.»   eUi^)3  J 

1-21 
fo 

I 

If we use a pulse function for Vi , the integration may be performed 

as in Appendix VII. Because of the factor before the integral in eq. 21, 

we obtain: 

(f-<J/= (lif   - "3^ 
/ - 

P(hh) 
r 

/ + V3 c3 
• J • 22 

1 
^ 3. Whh)* 

1-22 

L 
instead of eq. G-3.    Thus the betatron oscillations have two effects. 

One is to decrease the effective number of particles,  because of the 

f       term.    The other shows that the maximum rise time of the insta- 

bility is of the order of the radial oscillation frequency.    In the case of 

the z oscillations, the effective number of particles was decreased by 

a term   ~f      .    Note too that   /J/f« / in order that eq. C-2 holds. 
r. 

Thus this factor is always small and the finite radial oscillations have 

negligible stabilizing effect. 

We now show how the additional term in the denominator affects 

the rise time.    The dispersion relation,  eq.  21,  is valid only if AS «0O , 

because we have assumed a thin beam.    For stability    (Aöja   >   ^3cA 

and hence for small     2       . the second term in the denominator is small. 

 —r——     ■■      ■        - 
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It can be large only when there is instability.   In the limit when 

Voii. »    ft'O'^J we see that the instability growth rate is 

These results are all reasonable.   We expect the betatron oscil- 

lations to improve the stability.   It is, however, a surprise that the 

effect is so small.    That eq. G-3 is invalid for large growth rates and 

becomes eq.  22 is also reasonable because the constraint equation, 

eq.  2-6, breaks down for large growth rates.   Note, however, that in 

writing eq. 19 we assumed that higher powers of 
q. are negli- 

gible.    This requires the validity of eq. H-16, with     *-*/-*!   •    For 

the unstable case, as AG « &» , this implies that the second 

term in the denominator of eq.  22 is small.    Thus our conclusions above 

about the limiting growth rate which obtains when this term is large are 

not accurate.   It seems likely, however, that the inclusion of the higher 

order terms will not change the qualitative result. 

■., 
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APPENDIX X 

Infinite Beams 

We shall show here that an equation obtained from Bludman et 
(19) 

al.       is the same as one obtained from eq.  3-44. 

In eq.  3-44 let     %,    represent a pulse function of very narrow 

width and let    v; = o .    Then the integration of the first integral in 

eq. 3-44 is done as in Appendix VII.    If the width of the pulse now goes 

to one on the field   V, .    Thus eq.  3-44 may be written as 

to zero, then this integral is    -^     • *B   ^   in c^  3"44 is normalized 

/  =      !*1    +   ±^t      3V   dir J-l 
t/> r'k't )  xr . ^ 

which describes the longitudinal oscillations of a relativistic electron 

beam, which is not too hot, travelling through a stationary cold ion 

background.    We have also made the change of variables W- V. * vi in 

the second integral of eq.  3-44. 
(19) 

Now we shall obtain eq.  I from Bludman et al. From 
(19) 

eq.  2.19, p.  750 

L/?     represents the plasma frequency of a cold background plasma. 

This equation is equally true if the background has no electrons but 

only ions.    Then      ^p —9    ^(.,     ,  and 

^-    V.     +    ^ + 
J-2 
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(19) 
By eq.  2. 2a, 

I VTTe" / 
»t 

Jl-Vik* 6.. 
J-3 

where we have made the changes      tf, * vt->\r t J}u -* U* ir    .   If we 

assume no perpendicular velocity components then    \^ -o     , and from 
(19) 

the equation on the top right of p.  748, 

v y   'JO — 0 

J-4 

and 

*rf.r H. . ^ 3fJ0 :      '     ?^, 
3^ Dj»   9 «^ /'•«   9 u J-5 

T,8   is normalized to  n     , the particle dcnsily(on tlie field   d ir .    Thus 

inserting eqs,  4 and 5 into eq.   3 and integrating over the perpendicular 

components, we obtain     (/l =   ^ - ^fe«.) , 

yTT <,aM        U" o        3fo    i u/i. f ^ Kr    P/. 
<# i-1 Ki. Uz-lT^   <»^ >   > 3»^  c/t^ 

J-6 

where  £,     is normalized to one on the field dtf .    Also 

3vr   cfir   = 3 w     t/ tr 

t/ - w k, U/   - 1/  /l 

J-7 

U; v kt 

■ ■ 
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Inserting this result into eq.  6, and then eq.  6 into eq.  2 gives eq. 1 

Q.E.D. 

I 
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APPENDIX XI 

Plasma OscillationB and Lorentz Transformations 

We will show that the dispersion relation for longitudinal oscil- 

lations of a single stream of cold relativistic electrons, as obtained 

from eqs. 3-44 and 3-36, may be obtained from the equations for a 

stationary 'stream* by a Lorentz transformation. 

First we will consider the case of an infinitely wide beam as it 

is simpler.   Setting the number of ions equal to zero in eq. 3-44,  gives 

u/p4. = 0   .    Using next a pulse function for    */i_    as done in Appendix VII, 

and then setting the temperature term equal to zero in eq.  3-44, the 

dispersion relation for a relativistic beam becomes, 

i2 -- v.k (7><) 
''* K-l 

In a stationary system, i.e. , moving with the beam, we see the 
(28) 

longitudinal plasma oscillations, given by 

A =  *  ^P0 

where 

M' -  lflTh'ei K-2 

<na    is the electron density measured in the beam system and /*. is the 

mass measured in that system.    The wave disturbance in the plasma is 

represented by   e*'^      ''   .    Thus ( \Lt  \u ) form a four-vector.   The 

beam system is unprimed, while in the lab system, moving with a ve- 

locity -V with respect to the beam, the quantities are primed.    Thus 
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or      o'r    J^    1   \/k' because   v* 

In the beam system, t-> is given by  Jl   of eq.  2 or 

K-3 

u^ A = '/x K-4 

We now wish the value of  h»    as measured in the lab system.   Since n 

forms part of a four-vector we have the following transformation equation, 

where again the primed quantity is in the lab system, 

The current j    is evidently zero in the beam system.    Hence if    h~ h. , 

h'= f h,        i  and by eq. 4 

UJ V7r„VV/jL K-5 
/ >>•. 

and therefore eq.  3 is 

<-'= Vk' ±   fl]L!Lll\/j K-6 

*3 Ln. 

This is now identical with eq.  1 if the appropriate correspondences are 

made,  including      Uyp,,   = /fÜLtlllJ *       where    h'   is measured in the 
V     ^^     ' (19) 

lab system as is evident from the article by Bludman et al. 

Next we proceed to the case of very narrow beams,  i. e. , tfc« | 
(29) 

(b = beam radius).    As shown by Sturrock       this modifies the plasma 



«rtv 

I 

frequency given by eq.  2.    For thin beams 

K-7 

;/      W  cj, = Qa/.a ^c r.r?7 ^/^'j „.^yj 

i 

=       U/.. 

This is true non-rclativistically and hence holds true for a relativistic 

beam if  Uf   is observed in a coordinate system moving with the beam. 

In the lab system we observe a frequency Jl    , which may be derived 

from eq.  3-36.    We set the number density of ions equal to zero,  or 

equivalently their mass infinite, in which case the first term on the 

R. H.S. of eq.  3-36 is zero.    Setting the temperature term equal to zero, 

now gives 

I 

I 

I 

( 

I 

0 

I 
I 
I 
I 
! 

K-8 

if     ¥_3 « I     •   Also we have set    £• . fc'    , and   fe '    is measured in the 

lab frame.    We now wish to make a transformation from the  (*/ , A 

system to the   Us    ,   k'    system moving with velocity -V.    We have 

!„■ =    y ( u . vk) 

-   y (Q > vk) 
K-9 

using also eq. 7.   Also 

and K-10 

K =  y (h' -   iy£\ 

■ 
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Substituting this value for   k   into eq. 9 gives 

or 

U'  = (<? < y)k' 

JL     f  ±1 c? k* 

Vk 
I C?!^ 

Q 

c * 

Vh' 

Qk' 

using 
J3- i- K ■'('^) 

The expression for Q in eq.  7 may be written as 

^TT A,- •> < a CJi 
Jnr • TTL* ^.c* 

?i 
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K-ll 

K-12 

This   y>    is measured in the beam system and is proportional to the den- 

sity measured in the beam system.    Calling this    K    , then since by 

eq-  5.      h'= r*.   .we have that     v>s yK   .    Since the condition for 

the validity of eq.  8 is     ^ Ä ;     . the corresponding condition in the 

beam equation is     ^ <js a l      .    Hence by eq.  12. C?«C , and eq.  11 be- 

comes after substituting for Q in the numerator and neglecting Q in the 

denominator. 

o'=  Vk'   tj_ i n       ,  .    ; 
K-13 
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Identifying this   (*/ with Si   in eq.  8, we see that the equations 

are identical if 

First  a     must be transformed to the lab system.    The only quantity 

in   as   which transforms is   k   .    By eqs.  10 and 13, neglecting the Ji' 

term which is small 

r fw - yji_y] - A.' 
Thus in lab quantities 

K-14 

while 

.a IJL 
^ 7 i ' 

K-15 

by cq.  C-13. 

These constants differ somewhat because one refers to a circular 

geometry, and the other to a linear geometry, and also there is a factor 

IT    that does not appear in eq.  15,    This suggests that eq. 15 is in error, 

apparently because the retardation terms were neglected in writing 

eq. C-12.    Thus since eq. 14 is valid only for small   Ü'     , the factor 
y 

y      which should appear in eq.  15 is probably 

^ 

A 
i Ma 

W) 
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DEFINITIONS AND SYMBOLS 

a)   Roman Letter Quantity Symbols 

A      = vector potential of the unperturbed beam, A"( r, 0, z, t) 

A'     = vector potential due to the perturbation, A1 (r, &,  z, t) 

AB   = the external betatron potential, defined by eq. A-4 

B0    = magnetic field at the equilibrium orbit 

C      = velocity of light 

8* 

A 

g. 

g 

k 

= a (X^Jk     +./1 ) for small   t   ,  J^ »/  , and    l*o   ; for ^ = 0 
//// l*lf 

write  I   =.14.    Its value is   ^   5.    For larger   J   it is given by 

eqs. C-19, C-12 and C-13. 

= g2 
= g   + -L    .    For 2   =1,      ~-     = 1.3. also g0   = g( .    For more 

i      I* i 

accuracy see eqs. C-19, C-12 and C-13. 

E 8. 

* fo'C 
, where    o«-   - 

/ -1. 
I  

7J 

k2     =      J-r   ,  the magnitude of the wave vector when the disturbance is 

of the form     e 

1     = integers, ± 1, 2, 3.. . 

turbance through     e 

. .  it gives the spatial dependence of a dis- 
ile -Uli 

m0   = rest mass 

ml   = rest mass of the positively or negatively charged particle 

: relativistic mass,  equals    ^mQ m 

n       = field index, the exponent in Bz = B0/__i) 

N      = total number of particles in the beam of either specie 
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Pr 

P© 

Pz 

q 

r 

ro 

R 

t 

Z 

= radial canonical momentum (see Appendix I) 

= canonical angular momentum 

= axial canonical momentum 

= electric charge density 

= radial coordinate in a cylindrical lab coordinate system 

= equilibrium orbit radius 

= ro 

= t ime measured in the lab system 

=     ra 0l)t       , the average velocity of cither beam 

= axial coordinate in a cylindrical lab coordinate system 

b)   Greek Letter Quantity Symbols 

I 

V 

ill 

A 

AVT. 

lit 

*£■■ 

;-i, ^.J       •  i8 negative in the negative mass region 

, the relativistic   J'    factor 

,  gives the deviation from     J_        due to 

ST - iLr 

* c» :   -1_    _    ^^   J 
*' ~    T, 

the circular geometry 

1 g, -   g2   , a small positive quantity for/?/ > 0 

: range of p0  values for which a pulse distribution function gives 

non-zero values 

r, A O, = —» r ^ ■■ J , a measure of the beam temperature 

which contributes to the stabilization of the negative mass instability 
r, /  4       \ 
ä   \Ji'*yn,rJ) .'      '  a mca8ure of thG beam temperature which is 

effective for pure longitudinal oscillations 

width of the betatron well (see Appendix I) 
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6^ = (1 - n) -£—   , for parabolic wells given by eq. A-4, a number 

which is always less than one 

& - angular coordinate in a cylindrical lab coordinate system 

0 = ~ e 0'' . th© cyclotron frequency at the equilibrium orbit r0 

^ =  aTT«    h, c ^       ' Budker,s Pararneter' dimen8ionless measure 

of the lineal particle density ( V/ = 1 gives 17, 000 amps if 

l/"= c) 

f = minor radius of the beam,  as shown in Fig.  1 

(P = electrostatic potential of the unperturbed beam, ^)* (r, Ö  ,  z, t) 

jP's potential due to the perturbation,    ^ (r,   6   ,  z, t) 

%- the distribution function of the unperturbed beam, 

%{r>   ö   ,  z. pr. p0  , pz, t) 

^■= the distribution function of the perturbation, 

VTU.   Ö   ,  z, pr> p0    , pjj,  t) 

c)   Mathematical Symbols 

-v     implies proportional to 

^     implies approximately equal to.    This notation follows the SUN 
Commission's recommendations listed in Physics Todav.  15    19 
(1962) "—- 

P implies principal value 

I 
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d)   Dictionary 

N.M.I. = nogativo maeu instability 

0 
TraiiHitlon Enorgys for strong focusing accelerators, 1 - n is replaced 

by ks in the okprosaion for    <*.     , where kB   >    1.     The transition 

energy occurs for such  i'    than   « = 0 
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z 1 »1 

' 

1 2%x I \ 
p rj; ̂ y / 

Fig.  I.    The physical model.    Electrons rotate in the indicated sense. 

Fig.  2.    The vector potential well due to the external field Aß and the 

self-field A0.    The lines of the self-field B» are drawn 

schematically and encircle the torus,    (see p 13) 
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Fig,  3.   The lino W In tho complex A plane UHOCI for the Laplace 

trannfomi.    (sea p ^3) 

128 

Fig. 4.    Plot of the two-fltream N.M.I,  equation.    F = the first two terms 

on the R.H.S.  of eq.  3-20.    The figure is drawn for a stable 

case and gives four real roots.    Note that for a non-relativistic 

beam at one temperature lit a h, .    (see p 49) 
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Fig. 5.    Plot of the two stream longitudinal instability.    F = the two 

terms on the R. H. S.  of eq.  3-28.    Note that if the numerator 

of the second term in this equation is negative,  then the right 

side of the above figure is inverted about the horizontal axis, 

(see p 54) 

Fig.   6.    The Ordinate is       %_    , 
a 

of the curve SIIOWB that 

Since     ^=    JLi tJilil,  the concavity 

%> %    •    ^eep 79) 
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Fig.  7.    The complex  fl   plane used for the Nyquist diagram 

(see p 83) 
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Fig.  8.    Map of the curve C of Fig.  7 on the W plane for Maxwellian 

distributions,    (see p 83) 
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Fig. 9.   Map of the curve C of Fig.  7 for some multi-peaked 

distribution function,   (see p 85) 
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Fig.  10.    The complex   U"   plane used for integrations involving 

resonance shape distribution function,    (see p 88) 

131 



-iMKfll 

UNCLASSIFIED 

y. 

UNCLASSIFIED 


